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6. On Ono’s Problem for Quadratic Fields

By Masaki KOBAYASHI

Department of Mathematics School of Science, Nagoya University
(Communicated by Shokichi [YANAGA, M. J. A, Jan. 12, 1993)

For a quadratic number field k, we shall denote by d,, h, and x,, the
discriminant, the class number and the Kronecker character of k, respective-
ly. Let M, be the Minkowski constant of k:

%\/H_k if k is real,

% Vv—d, if k is imaginary.

For the following finite sets of rational prime numbers:
S(k) = {p, rational prime ;p < M,},
S, (k) ={peSW;x.@=—1},
S, (k) = {p € Sk ; x.(p) = 0},
S;k) ={peSw; x.@ =1},
we shall define the following three families of quadratic fields by
K; = {k, quadratic field; S(k) = S;(k)} (¢ = 1,2,3).
It follows from Minkowski’s theorem that the ideal class group of k is gener-
ated by the classes of prime ideals A/ lying on p in S (k). Therefore if
S(k) = S,(k) holds, then A, = 1. When k is imaginary, it is easy to prove
that s, = 1 holds if and only if S(k) = S; (k). In the relation with conjec-
ture of Gauss on the class number of real quadratic fields, it is interesting to
determine K;. Leu and Ono determined K, and K, in [2], [5] as follows:
K,={QWm); m=—1, %2, £3, £5, £6, 7, 13,15, = 30},
K,={QWm);, m=—1,+t2, £3,5 — 7,13, — 15, 17, — 23, 33,
- — 47, — 71, 73, 97, — 119}.
Moreover Leu determined K, with one possible exception in [1]:
K =QWm);,m=-—1,+2, £3,5 —7, —11, 13, — 19, 21, 29,
— 43,53, — 67, 77, — 163, 173, 293, 437}.
Remark 1. Under the assumption of GRH (the generalized Riemann
Hypothesis), we can determine K, without any exception.
Consider the finite set of prime numbers such as
S,(k) = {p € Sk, x,(» + 1}.
If h, is odd and S(k) = S,(k), then A, = 1 holds. The condition that &, is
odd and S(k) = S, (k) is weaker than S (k) = S, (k). Our purpose is to
determine the family K of all fields k satisfying that 4, is odd and S(k) =
So(k) under the assumption of GRH.
Theorem 1. If GRH holds, then there are exactly 42 belonging to K :
K={QWm);m=—1,+2, +£3,5,6, £7, £11,13, 14, — 19,
21, 23, 29, 38, — 43, 47, 53, 62, — 67, 69, 77, 83, 93, — 163,

M, =
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167, 173, 213, 227, 237, 293, 398, 413, 437, 453, 717, 1077,
1133, 1253}.
For real k = @ (¥Ym ) belonging to K, by the genus theory, there are
three different cases as follows:
by
m=12p, ;p = 3(mod4),
P, ;P = p, = 3(mod4),
where p, and p, are primes and p, < p,. Consider the following four families
of fields:
A = {imaginary quadratic fields} N K,
B ={QG/)} N K,
C =1{Q(/2p,); p, = 3(mod4)} N K,
D = {Q\pp,) ; p =p,=3(mod4)} N K.
Then K is classified into four disjoint classes: A, B, C and D. When k is
imaginary, k belongs to A if and only if k,=1 holds. Therefore
A={Qm) ;m=—1,—2,—3,—7,—11, — 19, — 43, — 67, — 163}.
So it is sufficient to prove the following Theorems 2-4.
Theorem 2. If GRH holds, there ave exactly 15 fields belonging to B :
B={QWm); m=2,3,5,7, 11, 13, 23, 29, 47, 53, 83, 167, 173,
227, 293}.

Theorem 3. If GRH holds, then there are exactly 5 fields belonging to C:

C=1{QWm);m=6, 14, 38, 62, 398}.

Theorem 4. If GRH holds, then there are exactly 13 fields belonging to D:

D ={QWm); m =21, 69, 77, 93, 213, 237, 413, 437, 453, 717,
1077, 1133, 1253}.

In order to prove Theorems 2-4, we need the following two theorems.

Theorem 5 (Mollin and Williams [3]). If GRH holds, the squavefree posi-
tive integers m = 2 (mod 4) satisfying (m/p) = — 1 for all odd primes p
< ym /2 are 6, 10, 14, 26, 38, 62, 122, 362, 398, where (/) is the Legendre
symbol.

Theorem 6 (Mollin and Williams [3]). If GRH holds, the squarefree posi-
tive integers m = 3 (mod 4) which satisfy m # 2¢° + 1 for any prime q and
(m/p) = — 1 for all odd primes p < +ym — 2 are 3, 7, 11, 15, 23, 35, 47,
83, 143, 167, 227.

Proof of Theovem 2. It is clear that the quadratic field k= @
(v2) satisfies the condition S(k) = S,(k). Consider the following families of
fields:

B, = {Q(/p,) ; p, = 1(mod 4)} N K,

B, = {Q\/p) ; p, =3(mod 4)} N K.
Then B is classified into three disjoint classes as follows:

B = {Q(2)} U B, U B,.

Next, suppose that k = Q(y/p,) belongs to Be. If there is a prime number ¢
satisfying p, = 2¢* + 1, then M, = /2¢* +1 > ¢q and (p,/¢) = 1. From
Theorem 6, it is necessary that p, belongs to {3, 7, 11, 15, 23, 35, 47, 83,
143, 167, 227}. So we see easily
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B, = {Q(/m) ; m =3, 7, 11, 23, 47, 83, 167, 227}.
Therefore
B={QWm);m=2,3,5,7, 11, 13, 23, 29, 47, 53, 83, 167, 173,
227, 293}.

Proof of Theorem 3. Suppose that k = @ (y2p, ) belongs to C. Then,
since M, = y/2p,, the prime number p such that p < M, and x,(») = 0 is 2
only. From Theorem 5, it is necessary that 2p, belongs to {6, 10, 14, 26, 38,
62,122, 362, 398}. So we see easily

C={QWm); m =6, 14, 38, 62, 398}.

Proof of Theorem 4. Suppose that kK = @ (/p,p,) belongs to D and set
A(x) = 2Z(p,p,/q), where the sum is taken over all primes ¢ < .

Let w(x) be the number of primes < x. For all primes < x, we denote
by =, (x) and =, (x) the number of primes g such that (p,p,/¢) =1 and
(p.p,/9) = — 1, respectively. Then A(x) = m,(x) — 7,(x). By Oesterlé [4],
if GRH holds, for i = 1,2,

| m@ - 3 : logt‘ < B(@),
where
B@) = 5z {(5+12%) 1080 + 2 (1B2 + 2)).
Therefore

|A@) | < 2B(x).
On the other hand, since k belongs to D, for x < —2’-21‘2
|[A(@) | = n(x) — 1

holds. By Roser-Schoenfeld [6], £ = 17 implies logx < r (z). Put t=%
VPib,, then
- log ¢ )
B =2yt {(L+ logt>lg(4t)+2<2 +2)].
Assume ¢ = e'2, then
[A@) | > logt — 1.

On the other hand, we have
|A® | < 2B®)

_3 2 log 2 10.6 7 log 2
——n_«/flogt+<———g—n, +14.6)ﬁ+———g—logt

10.6 vt
< tlogt+ 15.3t + Togt

15.3 |, 10.6
<1 12 12>ﬁ1°gt
< 2.35/tlogt
t
<logt 1
<|A® |,
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Table I

p n D ” D ”

3 5 43 140213 | 101 261153653

5 5 47 156525 | 103 261153653

7 5 53 550205 | 107 416748717
11 77 59 550205 | 109 416748717
13 117 61 994565 | 113 416748717
17 605 67 1144293 | 127 1586592293
19 717 71 1878245 | 131 1586592293
23 1965 73 1878245 | 137 5702566397
29 10925 79 9903005 | 139 5702566397
31 10925 83 27005517 | 149 15933687413
37 26253 89 27082557 | 151 25777678685
41 26253 97 27082557 | 157 181315486677

Table II

m r m 7 m 7 m r m v
21 5| 597 71349 52021 52757 13
69 54| 669 51357 32077 32773 3
77 13| 717 231389 5|2101 32869 3
93 7| 749 51397 72149 32893 3
133 3| 781 311437 72157 72901 5
141 5| 789 51461 5|2181 52933 17
213 11| 813 71477 32189 52949 5
237 13| 89 51501 3|2229 52973 11
253 3| 893 7]1509 52253 112981 5
301 3| 917 111541 52317 33013 3
309 5| 933 71589 52413 3|3053 7
341 5| 973 3|1661 52429 53093 13
381 5| 989 511757 19| 2453 13|3101 5
413 1311077 29 |1797 11 | 2461 3| 3117 7
437 711101 51821 52469 53149 5
453 37 | 1133 23 | 1829 5| 2517 73173 7
469 31141 31837 32573 73189 5
501 51149 51893 112589 53197 13
517 31253 291909 32629 3|3261 5
573 111293 17 1941 52653 33269 5
581 5| 1317 711957 3]2661 53309 5
5890 31333 311981 32733 113317 17

which is a contradiction. Therefore we have p;p, < 4¢™ 1f p,p, = 1(mod 8),
then (p,p,/2) = 1. Therefore we may consider p,;p, = 5 (mod 8) only. We
owe Tables I, II to J. Muramatsu. In the Table I, # is the minimal positive
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integer such that # = 5(mod 8) and (#/q) # 1 for all primes ¢ < p. From
Table I, we see p;p, < 3364. In Table II, 7 is the minimal prime such that
(p.p,/7) = 1 for pp, = 5(mod 8). From the table II, we have
D = {QWm) ;m =21, 69, 77, 93, 213, 237, 413, 437, 453, 717,
1077, 1133, 1253}.
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