3. Generalization of a Theorem of Manin-Shafarevich*)

By Tetsuji Shioda

Department of Mathematics, Rikkyo University (Communicated by Kunihiko KODAIRA, M. J. A., Jan. 12, 1993)

Let us fix some notation before stating the results. Let m be a positive integer with $m \ge 3$. Let $\{\Gamma_t \mid t \in \mathbf{P}^1\}$ be a linear pencil of curves of degree m in a projective plane \mathbf{P}^2 defined over an algebraically closed field k of arbitrary characteristic. Assume the following conditions:

(A1) Every member Γ_t is irreducible and general members are nonsingular.

(A2) The m^2 base points of the pencil are distinct. We denote them by $P_i(i = 0, 1, ..., m^2 - 1)$.

Then the generic member $\Gamma = \Gamma_t$ (for t generic over k) is a nonsingular curve of genus g = (m-1)(m-2)/2 defined over the rational function field K = k(t).

Let J denote the Jacobian variety of Γ/K and J(K) the group of its K-rational points. Each P_i defines a K-rational point of Γ . By choosing one of P_i , say P_0 , we have a natural embedding of Γ into J sending P_0 to the origin of J. Thus we have

$$P_1,\ldots,P_{m^2-1} \in \Gamma(K) \subset J(K).$$

For m = 3, $\{\Gamma_t\}$ is a pencil of cubic curves and $J = \Gamma$ is an elliptic curve, say E, over K. Inspired by Shafarevich, Manin proved that under (A1) and (A2) the 8 points P_1, \ldots, P_8 are independent and generate a subgroup of index 3 in the Mordell-Weil group E(K) (see [5], Th.6 and [6], Ch.IV, 26.4). Recently we have given a simple proof of this result based on the theory of Mordell-Weil lattices, where E(K) is endowed with the structure of the root lattice E_8 (see [7], Th. 10.11).

More recently we have extended the notion of Mordell-Weil lattices to higher genus case [9]. As an application, we can prove the following result generalizing the above theorem of Manin-Shafarevich to arbitrary $m \geq 3$.

Theorem 1. The notation being as above, assume the conditions (A1) and (A2). Then the group of K-rational points J(K) of the Jacobian variety J is a torsionfree abelian group of rank $r = m^2 - 1$, and the r points $P_i (1 \le i \le r)$ are independent and generate a subgroup of index m in J(K).

This is an immediate consequence of Theorem 2 below formulated in terms of Mordell-Weil lattices. By blowing up the m^2 base points from P^2 , we obtain a nonsingular rational surface S and a morphism

$$f: S \to \mathbf{P}^1$$

such that $f^{-1}(t) \simeq \Gamma_t \ (t \in \mathbf{P}^1)$. In particular, Γ/K is the generic fibre of this genus g fibration f. The exceptional curves (P_i) in S arising from

^{*)} Dedicated to I. R. Shafarevich for his 70th birthday.

 $P_i \in \mathbf{P}^2$ define m^2 sections of f. We choose $(P_0) = (O)$ as the zero-section. **Theorem 2.** With respect to the height pairing defined in [9], the Mordell-Weil lattice L = J(K) is a positive-definite integral unimodular lattice of rank $r = m^2 - 1$. It is an even lattice if and only if m is odd. The r points P_i $\in L$ generate a sublattice of index m in L. There is a unique point $Q \in L$ such that $mQ = P_1 + \cdots + P_r$, and P_1, \ldots, P_{r-1} , Q form a set of free generators of L = J(K).

Proof. First we note that the K/k-trace of the Jacobian J/K is trivial (i.e. the condition (*) of [9] is satisfied). Indeed this is the case for any fibration $f: S \rightarrow \mathbf{P}^1$ where S is a rational surface. This fact will be explained in the detailed version of [9]. Hence J(K) is finitely generated (Mordell-Weil theorem for function fields; see [4], Ch.6).

Now the condition (A1) implies that f has no reducible fibres. Hence J(K) coincides with the narrow Mordell-Weil lattice $J(K)^{\circ}$, which is always a (torsionfree) positive-definite integral lattice. Moreover L = J(K) is a unimodular lattice of rank $r = m^2 - 1$ since the Néron-Severi lattice of S is unimodular and of rank $\rho(S) = 1 + m^2$.

The rest of the proof is parallel to that given for the case m = 3 in [7], Th.10.11. First the height pairing of the points P_i can be computed as follows. By the formula (9) in [9], we have

$$\langle P_i, P_j \rangle = -(O^2) - (P_i P_j) + (P_i O) + (P_j O) = \begin{cases} 2 & i = j \ (\ge 1) \\ 1 & i \neq j \end{cases}$$

using the obvious fact that $(P_i^2) = -1$ and $(P_i) \cap (P_i) = \emptyset$ for $i \neq j$. Then it is easy to compute the Gram determinant

$$\det(\langle P_i, P_j \rangle) = m^2 \neq 0.$$

This shows that P_1, \ldots, P_r are independent and that they span a sublattice, say H, of index m in the unimodular lattice L.

Next take any point $Q \in L - H$. Then $mQ \in H$ can be written as $\sum_i n_i P_i$ for some integers n_i . Since L is an integral lattice, $\langle Q, P_i \rangle$ is an integer for any *i*. This implies that $n_i \equiv n_j \mod m$ for any *i*, *j*. Hence we have $mQ = \nu(P_1 + \cdots + P_r) + mR$ for some $\nu \in \mathbb{Z}$ and some $R \in H$.

Thus there is a point $Q \in L$ such that $mQ = P_1 + \cdots + P_r$, which is unique since L is torsionfree. It is clear that L is generated by P_1, \ldots, P_{r-1} and Q. Hence L is an even lattice if and only if $\langle Q, Q \rangle$ is even. But we have $\langle Q, Q \rangle = m^2 - 1,$

since the norm of $P_1 + \cdots + P_r$ is equal to $r(r+1) = m^2(m^2-1)$. Therefore L is an even lattice if and only if m is odd. This completes the proof of Theorem 2.

Remark. (i) Note that Theorem 1 or 2 is not vacuous because for any $m \geq 3$ there exist linear pencils of plane curves of degree m satisfying the conditions (A1) and (A2). This can be verified by an elementary dimensioncount argument (for this we had a useful discussion with K. Oguiso). More generally, existence of such a pencil follows from theory of Lefschetz pencils (see e. g. [1] or [3]).

(ii) In the classical case m = 3, it is easy to find pencils defined over

No. 1]

T. SHIODA

the rational number field Q such that the 9 base points are Q-rational, giving rise to an elliptic curve over Q(t) of rank 8. This fact was used in our effective version of Néron's method for constructing elliptic curves with high rank ([8]).

Question. For $m \ge 4$, does there exist a pencil of degree m curves, defined over Q, satisfying (A1), (A2) such that all the m^2 base points are Q-rational?

Actually the above proof works in a more general context. Namely, combined with the idea of Lefschetz pencils as in Remark (i), we can prove the following result which will be proved in detail elsewhere.

Theorem 3. Let X be a smooth algebraic surface with a trivial Picard variety, embedded as a surface of degree d in a projective space \mathbf{P}^{N} . Suppose that $\{\Gamma_{t} \mid t \in \mathbf{P}^{1}\}$ is a Lefschetz pencil of hyperplane sections of X. Let J denote the Jacobian variety of the generic member of this pencil, say Γ , defined over the rational function field K = k(t). Then J(K) is a positive-definite integral lattice of rank

$$r = \rho(X) + d - 2$$

whose determinant is equal to $|\det NS(X)|$.

The previous result corresponds to the case where X is the isomorphic image of \mathbf{P}^2 under the embedding defined by the complete linear system |mH| (H: a line in \mathbf{P}^2) so that $d = m^2$.

Example. Let X be the Fermat surface of degree 4 in \mathbf{P}^3 in characteristic 0. We know that X is a K3 surface with $\rho(X) = 20$, $|\det NS(X)| = 64$ (cf. [2]). Then Γ is a curve of genus 3 and its Jacobian variety has the Mordell-Weil group J(K) of rank 22 with det = 64.

References

- [1] Igusa, J.: Fibre systems of Jacobian varieties. Am. J. Math., 78, 171-199 (1956).
- [2] Inose, H., and Shioda, T.: On singular K3 surfaces. Complex Analysis and Algebraic Geometry. Iwanami and Cambridge Univ. Press, pp. 119-136 (1977).
- [3] Katz, N.: Pinceaux de Lefschetz: théorème d'existence. SGA 7 II, Lect. Notes in Math., vol. 340, pp. 212-253 (1973).
- [4] Lang, S.: Fundamentals of Diophantine Geomentry. Springer-Verlag (1983).
- [5] Manin, Ju.: The Tate height of points on an Abelian variety, its variants and applications. Izv. Akad. Nauk SSSR, ser. Mat., 28, 1363-1390 (1964); A. M. S. Transl., (2) 59, 82-110 (1966).
- [6] ——: Cubic Forms. North-Holland (1974).
- [7] Shioda, T.: On the Mordell-Weil lattices. Comment. Math. Univ. St. Pauli, 39, 211-240 (1990).
- [8] ——: An infinite family of elliptic curves over Q with large rank via Neron's method. Invent. Math., 106, 109-119 (1991).
- [9] ——: Mordell-Weil lattices for higher genus fibration. Proc. Japan Acad., 68A, 247-250 (1992).