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Let us fix some notation before stating the results. Let rn be a positive
integer with rn _> 3. Let {Ftlt pi} be a linear pencil of curves of degree
m in a projective plane P defined over an algebraically closed field k of
arbitary characteristic. Assume the following conditions"
(A1) Every member F is irreducible and general members are nonsingular.
(A2) The m base points of the pencil are distinct. We denote them by

P(i- O,1,...,m 1).
Then the generic member F= F (for t generic over k) is a nonsingular
curve of genus g- (m- 1)(m- 2)/2 defined over the rational function
field K- k(t).

Let ] denote the Jacobian variety of F/K and ](K) the group of its
K-rational points. Each Pi defines a K-rational point of/’. By choosing one
of Pi, say Po, we have a natural embedding of F into J sending P0 to the ori-
gin of J. Thus we have

P,...,Pm._l I"(K) J(tO.
For m- 3, {It) is a pencil of cubic curves and J-F is an elliptic

curve, say E, over K. Inspired by Shafarevich, Manin proved that under
(A1) and (A2) the 8 points P1,...,Ps are independent and generate a sub-
group of index :3 in the Mordell-Weil group E (K)(see [5], Th.6 and [6],
Ch.IV, 26.4). Recently we have given a simple proof of this result based on
the theory of Mordell-Weil lattices, where E(K) is endowed with the struc-
ture of the root lattice Ea (see [7], Th. 10.11).

More recently we have extended the notion of Mordell-Weil lattices to
higher genus case [9]. As an application, we can prove the following result
generalizing the above theorem of Manin-Shafarevich to arbitary m > 23.

Theorem 1, The notation being as above, assume the conditions (A1) and
(A2). Then the group of K-rational points J(K) of the Jacobian variety J is a tor-

sionfree abelian group of rank r m 1, and the r points P (1 N i N r) are

independent and generate a subgroup of index m in ](K).
This is an immediate consequence of Theorem 2 below formulated in

terms of Mordell-Weil lattices. By blowing up the m base points from P,
we obtain a nonsingular rational surface S and a morphism

f S-- p
such that f-(t) I’t (t P). In particular, F/K is the generic fibre of
this genus g fibration f. The exceptional curves (P)in S arising from

*) Dedicated to I. R. Shafarevich for his 70th birthday.
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P P define m sections of f. We choose (P0) (O) as the zero-section.
Theorem 2. With respect to the height pairing defined in [9], the

Mordell-Well lattice L J(K) is a positive-definite integral unimodular lattice

of rank r m 1. It is an even lattice if and only if m is odd. The r points P
L generate a sublattice of index m in L. There is a unique point Q L such

that mQ P + + Pr, and P1,... ,Pr-, Q form a set of free generators of
L J(IO.

Proof First we note that the K/k-trace of the Jacobian J/K is trivial
(i.e. the condition (*) of [9] is satisfied). Indeed this is the case for any fibra-
tion f S-- p1 where S is a rational surface. This fact will be explained in
the detailed version of [9]. Hence J(K) is finitely generated (Mordell-Weil
theorem for function fields’see [4], Ch.6).

Now the condition (A1) implies that f has no reducible fibres. Hence
J(K) coincides with the narrow Mordell-Weil lattice J(K) , which is always
a (torsionfree) positive-definite integral lattice. Moreover L J(K) is a uni-
modular lattice of rank r- m 1 since the Nron-Severi lattice of S is un-
imodular and of rank p(S) 1 + m.

The rest of the proof is parallel to that given for the case m- 3 in [7],
Th.10.11. First the. height pairing of the points P can be computed as fol-
lows. By the formula (9) in [9], we have

(P, P) --(0) (PP) + (PO) + (PO) / 2 i= J (2 1)
1 i4=j

using the obvious fact that (P)=- 1 and (P) (P)= 0 for i4=j.
Then it is easy to compute the Gram determinant

det (P, P) m 4= O.
This shows that PI,... ,P,. are independent and that they span a sublattice,
say H, of index m in the unimodular lattice L.

’Next take any point L--H. Then m H can be written as

2nP for some integers n. Since L is an integral lattice, , P) is an in-
teger for any i. This implies that n n rood m for any i, j. Hence we have
mQ- v(P + + P,.) + mR for some Z and some R H.

Thus there is a point L such that m- P + + P, which is

unique since L is torsionfree. It is clear that L is generated by P,... ,P,._
and Q. Hence L is an even lattice if and only if Q, Q) is even. But we have

(Q, Q) =m --1,
since the norm of P+ + Pr is equal to r(r + 1) m2(m 1). There-
fore L is an even lattice if and only if m is odd. This completes the proof of
Theorem 2.

Remark. (i) Note that Theorem 1 or 2 is not vacuous because for any
m _> 3 there exist linear pencils of plane curves of degree m satisfying the
conditions (A1) and (A2). This can be verified by an elementary dimension-
ciunt argument (for this we had a useful discussion with K. Oguiso). More
generally, existence of such a pencil follows from theory of Lefschetz pencils
(see e. g. [1] or [3]).

(ii) In the classical case m 3, it is easy to find pencils defined over
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the rational number field Q such that the 9 base points are Q-rational,
giving rise to an elliptic curve over Q(t) of rank 8. This fact was used in
our effective version of Nron’s method for constructing elliptic curves with
high rank ([8]).

Question. For m _> 4, does there exist a pencil of degree m curves,

defined over Q, satisfying (A1), (A2) such that all the m base points are
Q-rational?

Actually the above proof works in a more general context. Namely, com-

bined with the idea of Lefschetz pencils as in Remark (i), we can prove the
following result which will be proved in detail elsewhere.

Theorem 3. Let X be a smooth algebraic surface with a trivial Picard

variety, embedded as a surface of degree d in a projective space pN. Suppose that
{F[ t P} is a Lefschetz pencil of hyperplane sections of X. Let ] denote the

Jacobian variety of the generic member of this pencil, say I, defined over the
rational function field K k(t). Then ](t0 is a positive-definite integral lattice

of rank
r=p(X) +d--2

whose determinant is equal to det NS(X) I.
The previous result corresponds to the case where X is the isomorphic

image of e under the embedding defined by the complete linear system
ImH] (H’ a line in PZ) so that d m.

pExample. Let X be the Fermat surface of degree 4 in in character-
istic 0. We know that X is a K3 surface with p(X)- 20,[detNS(X)[

64 (cf. [2]). Then F is a curve of genus 3 and its Jacobian variety has the
Mordell-Weil group ](K) of rank 22 with det 64.
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