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In [3] (cf. [9]), Bando and the author proved that there exists a complete
Ricci-flat Khler metric on the complement of a smooth hypersurface D of a
Fano manifold X if (X, D) satisfies the conditions: (i) cl(X) or[D] with
a > 1 and (ii) D admits a Kihler-Einstein metric. This result and its proof
find some applications in [2], [5], [6] and [11] to problems differential geomet-
ry. But we find this existence theorem quite restrictive if we try to apply it
to problems in complex algebraic geometry. In this note we announce a
general existence theorem for complete Ricci-flat Kihler metrics on certain
class of affine algebraic manifolds, which generalizes the results in [3] and
[9] by removing the Kfihler-Einstein condition at infinity. Details and an ap-
plication will appear elsewhere ([7]).

Theorem 1. Let X be a Fano manifold, i.e., X has ample anticanonical
bundle. Let D be a smooth connected hypersurface in X such that c (X) c[D]
with o 1. Then there exists a complete Ricci-flat Khler metric on X- D.

The asymptotic bahavior of the resulting Ricci-flat Kfihler metric may
be described as follows. As Q(X) > 0 and Q(X) [D], there exists a
Hermitian metric []" on the line bundle Ox(D) such that

0-]-- lOSt t =log

defines a Khler metric on X, where is a holomorphic section of Ox(D)
vanishing along D. Then

--1

turns out to be a complete Khler metric on X- D. The resulting Ricci-flat
Khler metric on X- D has a Kfihler otential of the form

u: _l I1 11
where u satisfies the a priori growth (decay, if k 2 3) estimates:

[
for 0 V k Z, where denotes the Levi-Civita connection of . In
particular, u is at most of quadratic growth relative to the distance function
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of co from a fixed point in X- D and the complete Ricci-flat Kthler metric
do v:1 is equivalent to co"

Coo < do < C-co
holds with some a priori constant C > 0. We expect that Theorem 1 will be
useful in complex algebraic geometry In fact, as we explain below, we are
able to understand Kobayashi-Ochiai’s characterization [8] of complex pro-
jective spaces from the view point of complete Ricci-flat Kfihler metrics.
Kobayashi-Ochiai’s theorem is essentially as follows"

Theorem 2 ([8, p.32]). Let X be an n-dimensional compact complex man-

ifold with an ample line bundle L. Suppose
c(X >- g c (L)

with Z g >/ n + 1. Then (X, L) is biholomorphic to the hyperplane section

(P.(C), O (1)).
Using the Hirzebruch-Riemann-Roch theorem and the Kodaira vanishing

theorem, Kobayashi and Ochiai first showed
Lemma 1 ([8, p.36]). Let (X, L) be as in Theorem 2. Then the following

two properties hold"

c (L) [X] 1,
(2) dimH(X,L) n+ 1.

Then they showed (by elementary induction) that the above properties
imply the following Lamma 2.

Lemma 2 ([8, Lemmma 2(I) and Lemma 3]). Let X and L be as in
Theorem 2 and let ao, ,n be linearly independent elements of H(X, L)
with Do,’’’,D. their zero divisors. Then V.-g_I Do f D f3 f D(k
0,1, ,k) is irreducible of dimension n- k- 1 whose Poincarb dual is

(Q(L))+ In particular H(X F) has no base points
Bertini’s theorem then implies
Lemma 3. The generic element of the linear system lLI is a smooth irre-

ducible hypersurface in X.
Now we arrive at the following situation" X is a Fano manifold, there

exists a smooth connected hypersurface D such that Cl(X)= a[D] with
a _> n + 1. From Theorem 1, we have

Lemma 4. There exists a complete Ricci-flat Kghler metric do on X- D
with asymptotic properties described above.

Let D be defined by a0 0 and set zi =-o for 1 --< i--< n. Then
{z)

__
are nonconstant holomorphic functions on X- D with at most linear

growth with respect to the distance function of the metric do. Lemma 2
implies that r] dz A.../x dz. is a nonvanishing holomorphic n-form on

X- D with poles of order n -+- 1 along D. Therefore the function

f log \
is a bounded pluriharmonic function on X--D which extends smoothly on
X. Thus f turns out to be a constant function. Hence each z is just of linear
growth and ce n + 1. Now we consider the finite holomorphic map

z (z,"’,z,,)" X-- D--,
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As z is of maximal rank everywhere and Cn
is simply connected, the map z

must be an isomorphism. Moreover the Ricci-flat Khler potential h on
X- D is equivalent to z ][- zl +’’" +]zn ]. Hence we have a Kihler
potential on Cn

which is equivalent to the squared distance function from
the origin of the standard flat metric and satisfies the complex
Monge-Ampere equation

det \OziO5.j/ 1.

Write z + and w 8 z and think of as a deformation
of w. Then Theorem 1 implies that w is equivalent to w. Set

where g denotes the Levi-Civita connection of the flat metric . Then
Calabi-Aubin-Yau’s identity ([4], [10] and [1, Lemma, p.153]) implies that

is a nonnegative subharmonic function"
o.

But it follows from Theorem 1 that the third derivatives of are of order
z Hence the maximum principle implies that [I vanishes identically,

i.e., the third derivatives of mixed type all vnish. As every function in
Ker(OO) can be written as f + R with holomorphic functions f and g, we in-
fer that is of the form

,= gze + f+ f
where the coefficients Ra are constant and f is holomorphic. Therefore & is
a complete flat metric. So D has a tubular neighborhood in X diffeomorphic
to San- and the J-rotation of the gradient vector field of the distance func-
tion (relative to &) is isotopic to the vertical vector field of the Hopf fibra-
tion. Thus X turns out to be diffeomorphic to P(C). This implies that the

C-holomorphic map z’ X- D extends to a holomorphic map
[0" .1 x P.(C)

which is a diffeomorphism. Thus (X, L) is biholomorphic to the hyperplane
section (P,(C), O(1)).
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