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19. A Continuation Principle for the 3-D Euler Equations
for Incompressible Fluids in a Bounded Domain

By Taira SHIROTA™® and Taku YANAGISAWA * ™

(Communicated by Kiyosi ITO, M. J. A., March 12, 1993)

1. In this paper we study the Euler equations for ideal incompressible
fluids in a bounded domain 2 in R®:

(1) u, +uVu +Vp=0, V-u=0fort=0,x € Q,
(2) u'n=0 for t=0,x€ET

Here the boundary I" of £ is assumed to be of class c” ; 1 and x are time
and space variables; u = u(¢, x) = (u,, u,, u,) is the velocity and p = p(¢, x)
is the pressure; n = n(x) = (n,, n,, n;) is the unit outward normal at
x€T; we write u,=0u/ot, d,=0/0x' for i=1,2,3, V= (3, 0,
9,) and 'V =3°_, 9,

Let s = 0 be an integer. We denote by H (2 ; R® the usual Sobolev
space of order s on £ taking values in R®. The norm is defined by [ 2 ||§ =
S| 0%u 22, where 8% = 8'*/8" 852 8% with a = (ay, @y, a,). For
0 < T< oo, we put

X,(T) = C°([o, T1; H (2 ; R») n C'([0, T]1; H (2 ; RY).

Now we state our main

Theorem. Let s > 2 be an integer. Suppose that u is a solution of (1), (2)
belonging to X, (T") for any T’ < T < o0 such that || u(D |1 o as tT T. Then

(3) j; | rot #(7) |pegdt 1 © as t1 T.

This theorem is an immediate consequence of the local in time existence
theorem for the initial boundary value problem (1), (2) with the initial data
u’ € H*(Q ; R®) satisfying V-u°=0in 2, «*-n =0 on I (see [3,6]), and
the following new estimate for a smooth solution # of (1), (2) such that # €
X,(T) with s > 2: There exists a nondecreasing continuous function F(¢, x, )
=0fort=0,x=0,y =0, satisfying the estimate

4 lu@®l, < F@ =)l j(: | rot (7) |;=gd7) for t € [0, T1.

In the sequel, C is a constant which might change line by line and (¢, x) is
always a smooth solution of (1), (2) in the sense mentioned above.

Such a link that exists between the accumulation of the vorticity and the
passible breakdown of smooth solutions for the Euler equations was shown
by Beale-Kato-Majda [2] for the motion of fluids in the entire space R’
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When £ is a bounded domain, the arguments become more involved, because
of the appearance of the boundary. Recently Ferrari [5] discussed this link
for simply connected domains in R® by utilizing the Green’s matrix of Solon-
nikov [8] for the boundary value problem of an elliptic system introduced by
himself.

In order to state the reasoning in a clear-cut way, we use the theory of
harmonic integrals. The crucial estimate (15) is shown by considering the
generalized Biot-Savart law (6) and the representation of a parametrix of
Laplacian on 2-forms on £. To derive this representation, we also apply the
result of [8].

2. Let H(Q ;Ae) be the Hilbert space of #-forms A¢ on Q with the
usual norm of H'(2). In what follows we identify a vector field # and the
vorticity rot # = (w,, w,, w,) on 2 with a 1-form uldx1 + uzd;zt2 + usdx3
and a 2-form w,dz’ A dz® + w,dx® A dx' + w,dx' A dx® on Q. Here the
canonical metric of R’ is induced into 2. Next let d,, 0, and * denote the
exterior derivative on #-forms, the codifferential operator of d,;, and the
Hodge star operator, respectively. ¢ is the inclusion map I'— 2 and ¢ de-
notes the induced map of ¢. In general, for a differentiable mapping @, o*
denotes its induced map. (For definitions in the above, see [9].) Then Lapla-
cian 4, on ¢-forms and the space of harmonic ¢-forms # ,(£2) on 2 are de-
fined by

A,=d, 0,1 04,14y,

#(Q) ={we H@Q;A) | dw=0,35,w=0o0nQ, *(*w) = 0).

We summarize the statement of the decomposition theorem on £ as
follows: (See Theorems 7.7.1-7.7.4 in [7], Theorem 10.5 in [1] with the fact
remarked after (8). See also [4].)

i) For =1, 2, Laplacian 4, on ¢-forms with the domain

D(4) = {we H*Q; A | *(*w) = F(xdw) = 0},

has the kernel and the cokernel equal to # ,(£2), which is a finite dimension-
al subspace included in C”(2; A5).
ii) For £ = 1,2, the space H*(2 ;Aé) is decomposed as
(5) HQ; A =#,DDb,,,d,A;' # ,(D)DPd, 5,4, (D).
Here A, is the inverse of 4, on #,(2)* which is the L*-orthogonal comple-
ment of # ,(2) in H (2 ;Aé), and all subspaces on the right side of (5) are
L*-orthogonal to each other.
iii) Since u(¢#, x) is L*-orthogonal to doﬁlAl_l(%’l(.Q)L) in (5), we obtain from
ii)

R
6)  ult,x) =2 2,W0a,@ + 5,4, dut,z),te [0, T],z € Q,

i=1

where R = dim #,(R), {a,(x)}", € C”(®) is an L*-orthogonal basis of
#,(2), and 4,0 = (u(t, 2), a,(x)) 2, 1 < i < R. Here we used the fact
that d,A]" = A;'d, (see p. 547 in [4]) and d,u(t,") € #,(D)".

3. We use an appropriate parametrix of 4,  Choose an open cover of
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Q, {6, such that U'_,0"=Q,0°cc 2,6 NI+ ¢,1 <1<k and
each 0", 0 < y < k, is a bounded domain with C”-boundary 80’. We also
assume that %’ @) = {0}, 1 < y < k. Take open subsets {@,7}7_0, 1=1,2,
such that U 00l = 2 and
0, CC@°CCO° 0iccO,cc @ inQ, 1373k.

Choose cut off functions {(p,r},_o, 1= 1,2, satisfying supp go, = 0,, and supp (p,T
C @7 U 1<y<k fori=1,2 In addltIOI’I these {qo,},_o, = 1,2, are
chosen so as to satisfy ZT=0 ¢l =1o0n 2, ¢;=1o0n 0] for 0 < y < k, and
0¢,/0n =0 on I' for 1 < y < k. Next we solve the following boundary
value problems:
- A,0° =f%in 6°, v° = 0 on 30",

A0"=fTin 0", f (*v") = (*d") =0,1 < y<k,
where the f are assumed to be in H(©" :AD,0< v < k, and the ¢, denote
the inclusion maps 00" — 0", 1 < y < k. Since #,(0") = {0}, 1 < y <k,
we see from ii) in §2 that the problems (7) have solutions v’ € H*@0 ; AY,
0 < 7 < k. Using conventional notations, we may rewrite (7) as follows:
® " Av° =f"in 0°, v" = 0 on 30",

— A =f"in0, V"X =0, Vo' =00n00,1<7y<k
Here A = 97 + 8. + 0, and #" = n’(x) = (n], n}, n}) is the unit outward
normal at x € 80’. Notice that — A is an elliptic operator and the boundary
conditions in (8) satisfy the complementing condition with respect to — 4 in
the sense of [1]. Then by virtue of Theorem 5.1 of [8], we see that there exist
3 X 3 matrices g'(x, ) defined on 6" X 07, 0 < 7 < k, such that the solu-
tions v” of (8) are expressed as

© v@=[ g@ of Gy, 0<r<k
and the following estimates hold for any multi-indices «, :
(10) 870" (@, | < Clz—y|""* " @, p €e0x0,0< 1<k

Fix t € [0, T]. Let each ¢,(x)g’(x, y), 0 < 7y < k, be the extension with
respect to x of itself taking the value O outside of @ We put q(x, y) =
o 03@g" (x, ¥ ¢l(y) and then set

(11) Rld,ul(¢, x) —qu(x ydu(t, ydy + du(t, x).

Here fq(x yd,u(t, ydy € D(4,), as a 2-form, by a particular choice of
¢;, 1 < 7 < k. Referring to (8), (9), we get by direct calculation

(12) Rld,ul(t, ) = j‘;r(x, wdu(t, y)dy.

Here r(x, y) is a 3 X 3 matrix depending on x, ¥y € R, which consists of
first order derivatives of g’(x, y) with respect to x multiplied by ¢](y) and
the derivatives of ¢;(x), 0 < 7 < k. So, thanks again to the special choice of
{@}io,i=1, 2, we see that #(x, ) is smooth on 2 X £. On the other
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hand, since both terms on the right side of (11) belong to #,(2)*, Rld,u] €
%Z(Q)l. Hence, in view of ii) in §2 and the fact remarked after (11), we
finally obtain from (11)

(13) 8,4;" (d,w) (¢, ) = 6, fa q(x, Wdu(t, ydy + 6,4, (Rldul) (t, ).

4. We give a sketch of the proof of (4). Fix ¢t € [0, T]. Note that the
pressure p(¢, x) is a solution of a certain Neumann problem in £ (see the
proof of Theorem 3 in [3]). Then by using Gagliardo-Nirenberg’'s inequality
and by applying a limit argument, we obtain (see [2] for the counterpart of
this inequality)

t
(14) | (2) "s < ” u(0) ”seXP(Cj; {|V u(z) IL“(.Q) + | u(o) |L"(9)}d7)-

This estimate is given in [10]. In addition, we have
(15) |V u(@®) |pmgy < Clu() [l, + 1+ @ + log, | u(@®) ) | d,u®) |,-0},
(16) | u(t) IL“(Q) S C {" u(O) "0 + I dlu(t) IL'(Q)}'
Here log,7:=logr for r=1,: =0 for 0<7<1 Noting that
| dyu(t) |j=y = | rot u(t) | -, and combining (14)-(16), we get the desired
estimate (4) in the same way as in [2]. So we give the proof of the estimate

(15). The estimate (16) is proved more directly. First, since the terms of (6)
are L’-orthogonal, we obtain from the fact that || #(#) |, = | #(0) ||,

A1 17 E 408, |0 <140 | £ 176,60 |-,

Next, since #(x, y) in (12) is smooth on 2 X £, we get by using Sobolev’s
inequality and Theorem 10.5 in [1]

(18) V8,4, (RIdul) () | < C| V3,45 (RId,ul) (2) |10
<C| Rldul(t) IWm(g, < C| d,u(t) |L“(.Q)’
for p > 3. In view of (6), (13), it remains to show pointwise estimates of the

gradient of ,0,(@w’ (¢, x), 0 < ¥ < k, where w'(t, 1) = f; Tg’ (z, o1 @)

X d,u(t, y)dy. To do this, we introduce diffeomorphisms {®"}_, such that
each @ maps 0" onto V7 which is contained in 8, = {z| |z| < 1, x>0},
and O N I corresponds to a part of 0 = {z|| x| < 1, z° = 0}. In addition,
{0, @7)};;1 must be taken so as to be an admissible boundary coordinate
system (see Definition 7.5.2 and Lemma 7.5.1 in [7]). Fix 1 < v < k and
omit suffix y from o', w, P, and so on. It is easy to see that w satisfies the
boundary conditions of (8) on & N I, if and only if W, = W, = 0, /0% = 0
on VN o where # = ®(x) and w(t, &) = (O ) w(t, 2) as 2-forms. Then
we observe that each of 611)/8.?‘, 1 = 1,2, satisfies also the same boundary
conditions as above on V N ¢. Define two differential operators A; = 2}11
bl () 0,E + B;(x), 1= 1,2, which act on 2-forms v on 0, by Ay = 0* (05 /98%).
Here b)(x), E, B,(x) are smooth functions on 0, the 3 X 3 unit matrix, 3 X 3
matrices depending smoothly on x € O, respectively. It is obvious that
Zf=1 b; 7n; = 0 on 6 NTI,i=1,2 and each A,w satisfies the same boundary
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conditions as in (8) on @ N I'. Hence we have
— A w) = Fi(t, x) in O,

N,0,w) Xn =0, V- (A,p,w) =0 on 0, i=1,2,

where F;(t, x) = (—A,p,dyu + A I— A4, ¢,Jw + [— A4, Ao,w) (¢, ). Then,
by the same reasoning as used to show (9), we obtain (A;p,w) (t, x) =

(19)

Lg(x, YF,(t, ydy, i =1,2. So, regarding J, as a system of differential
operators (see (7.2.14) in [7]), we have for { = 1,2,
(20) (A;0,0,w) (¢, ) = j; 0., 8, WF,(t, wdy — [0, Ado,w(t, x).

Note that A, is also defined on 1-forms by the same way as above. To esti-
mate the first term on the right side of (20), we introduce an auxiliary func-
tion {(x) € C:(Ra) such that {:=1 for |z| £1,:=0 for | x| = 2, and
divide this term into two terms,

- fg Ca — 9)/0)8,, gz, y) N,0,d,w ¢, Pdy

— fﬁ (1=, 9)/0))0,, 2(x, 1) Aypidyw) (¢, y)dy,
1/4

where 0 < p < p, with o, small enough. Taking p :=p, if |ul; < o, ", :=
[ % ||3_4 otherwise, as in pp. 65-66 in [2] we obtain from (10)

@) | [ d.sG 0 Uodw tody|
< CA{1 + log, [l 2 (2) ”3} | du(t, x) |L"(.Q) + C.

By arguments similar to that used for deriving (18), we get

(22) | [0,, Ailp,w(t) IL"(.Q) < CI [0, Adp,w () |W1"(.Q)
S C l w(t) 'WZ’P(.Q) S C| dlu(t) IL’(,Q) S C | dlu(t) |L~(9)’ i = 1, 2,

for p > 3. Further, by Holder’s inequality and Theorem 10.5 in [1], we
deduce from (10) that

(23) l_/;az,zg(xy y) (A,[_A’ (Pz]w + [_Ay A,]gDZW) (t’y)dy L=

S Clw® |peag < Cldu® g < Cldu® |pq, i =1,2.

Accordingly, we conclude from (6), (13), (17)-(18), and (21)-(23) that the
maximum norms of two tangential derivatives on O are estimated by the
terms of the right side of (15). Since the normal derivative of a solenoidal
vector field is expressed as a sum of the tangential derivatives and the com-
ponents of the vorticity, we get finally the estimate (15) on a suitable neigh-
borhood of the boundary. We can also prove the estimate (15) on a subset of
2 far from the boundary in a similar way. Thus we end the proof of (15).
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