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A Continuation Principle for the 3-D Euler Equations

for Incompressible Fluids in a Bounded Domain

By Taira SHIROTA *) and Taku YANAGISAWA **)

(Communicated by Kiyosi ITO, M.J.A., March 12, 1993)

1. In this paper we study the Euler equations for ideal incompressible
fluids in a bounded domain .Q in R3"

(1) ut + u’17u + 17p O, 17.u 0 for t -> 0, x 12,

(2) u’n 0 for t > 0, x F.
Here the boundary F of .Q is assumed to be of class C;t and x are time
and space variables; u u(t,x)= (ul, u., u3) is the velocity and p =p(t,x)
is the pressure; n n(x)= (nl, n2, na) is the unit outward normal at
x /’; we write ut Ou/Ot, Oi O/Oxi for i= 1, 2, 3, 17= (1, 2,
03) and u" V 3=1

Let s--> 0 be an integer. We denote by Hs(D;R3) the usual Sobolev
i]3"space of order s on .Q taking values in The norm is defined by

0< T< oo, weput
Xs(T) C([0, T] ;HS(9 ;Ra)) N C([0, T] ;HS-(9
Now we state our main
Theorem. Let s > 2 be an integer. Suppose that u is a solution of (1), (2)

belonging to Xs (T’) for any T" < T < oo such that u(t) Ils T oo as t T T. Then

(a) rot u(v) Iz-(o)dv T oo as t T T.

This theorem is an immediate consequence of the local in time existence
theorem for the initial boundary value problem (1), (2) with the initial data

o Hs 0 in /2, u .n 0 on F (see [3,6]), andu (Q R) satisfying V’u 0

the following new estimate for a smooth solution u of (1), (2) such that u
Xs(T) with s > 2" There exists a nondecreasing continuous function F(t, x, y)
-> 0 for t -> 0, x 2 0, y -> 0, satisfying the estimate

f0(4) u(t)IIs -< F(t, .(0)IIs, rot u(r)],.-(a,dr) for t [0, T].

In the sequel, C is a constant which might change line by line and u(t, x) is
always a smooth solution of (1), (2) in the sense mentioned above.

Such a link that exists between the accumulation of the vorticity and the
possible breakdown of smooth solutions for the Euler equations was shown
by Beale-Kato-Majda [2] for the motion of fluids in the entire space Ra.
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When is a bounded domain, the arguments become more involved, because
of the appearance of the boundary. Recently Ferrari [5] discussed this link
for simply connected domains in R3

by utilizing the Green’s matrix of Solon-
nikov [8] for the boundary value problem of an elliptic system introduced by
himself.

In order to state the reasoning in a clear-cut way, we use the theory of
harmonic integrals. The crucial estimate (15) is shown by considering the
generalized Biot-Savart law (6) and the representation of a parametrix of
Laplacian on 2-forms on . To derive this representation, we also apply the
result of [8].

Ae
2. Let HS(f2 Ae) be the Hilbert space of g-forms on with the

usual norm of Hs(/2). In what follows we identify a vector field u and the
vorticity rot u (wl, w2, w3) on with a 1-form uldx + u2dx -t- udx
and a 2-form wdx A dx wdx A dx wdx A dx on . Here the
canonical metric of R is induced into . Next let de, fie, and denote the
exterior derivative on g-forms, the codifferential operator of de_, and the
Hodge star operator, respectively. is the inclusion map and * de-
notes the induced map of
denotes its induced map. (For definitions in the above, see [9].) Then Lapla-
clan Ae on g-forms and the space of harmonic g-forms e() on are de-
fined by

Ae de-e + e+ de,
e(D) {w H(D Ae) dew- O, 8ew O on D, c * w) 0}.

We summarize the statement of the decomposition theorem on D as

follows: (See Theorems 7.7.1-7.7.4 in [71, Theorem 10.5 in [11 with the fact
remarked after (8). See also [41.)
i) For g 1, 2, Laplacian Ae on g-forms with the domain

D(Ae) {w H (9 Ah e* * w) e (*dew) =0},
has the kernel and the cokernel equal to g(), which is a finite dimension-
al subspace included in (, At)
ii) For g 1 2, the space ( Ag) is decomposed as

(5) HS(9 ;A
Here A is the inverse of At on gt()z which is the L-orthogonal comple-

ment of g() in Hs(;A), and all subspaces on the right side of (5) are
L-orthogonal to each other.
iii) Since u(t, x) is L-orthogonal to doA(g()) in (5), we obtain from
ii)

R

(6) u(t, x)

where R- dim g(), {ai(x)} Ri= C(D)is an L-orthogonal basis of
g(9), and (0 (u(t, x), a(x)),(9, 1 i R. Here we used the fact
that dA- Ad (see p. 547 in [4]) and du(t,’) (9).

3. We use an appropriate parametrix of A. Choose an open cover of
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r=o, such that Uk r=r=o c 12, f3 F , 1 E yE k, and
each r, 0 k, is a bounded domain with C-boundary r. We also
assume that (r) {0}, 1 <_ <_ k. Take open subsets {}r=o, i= 1,2,
such that U r

r=o 9 and

Choose cut off functions {} o o r
r=o,

c U F, 1 -< -< k, for i 1, 2. In addition, these {}r=o, i 1,2, are
chosen so as to satisfy r=o 1 on 9, 1 on for 0 G T k, and
O/On 0 on F for 1 G T G k. Next we solve the following boundary
value problems:

(7) Aevo=foino, vo_ 0on

Aevr fr in r cr *vr) gr ( $ devr) 0 1 < r < k

where the f r are assumed to__be in H(r ;Aa), 0 G k, and the er denote
the inclusion maps O#r r, 1 --< r < k. Since 2(#r) {0}, 1 -< r < k,
we see from ii) in 2 that the problems (7) have solutions v r Ha(r;Aa),
0 g G k. Using conventional notations, we may rewrite (7) as follows:

Avo= fo in o, vo=0on
(8)

Avr fr in r, vr x nr O, V "v
r 0 on Or, 1 r G k.

r n)is the unit outwardHere A 0+ O+ O and
normal at x 0r. Notice that A is an elliptic operator and the boundary
conditions in (8) satisfy the complementing condition with respect to A in
the sense of [1]. Then by virtue of Theorem 5.1 of [8], we see that there exist

gr3 X 3 matrices (. ) defined on x 0 G ? G k. such that the solu-
tions vr of (8) are expressed as

(9) v(.) g(.. )f()d. 0

and the following estimates hold for any multi-indices

(10) a:ag(x, y) <- C Ix- y ---, (x, y) O--ix O--, 0 --< 1" < k.

Fix t [0, T]. Let each rpr(x)gr(x, y), 0 <_ 1" <--k, be the extension with

respect to x of itself taking the value 0 outside of yr. We put q(x, y)
k rr=o rP2 (x)gr (x, y) rpl(y) and then set

(t, x) A

_
q(x, y)dlu(t, y)dy + du(t, x).(11) R[dlU]

j q(x, y)du(t, y)dy D(A.), as a 2-form, by a particularHere choice of

rp2r, 1 _< 7" <-- k. Referring to (8), (9), we get by direct calculation

R[du] (t, x) fo r(x, y)dlu(t, y)dy.(12)

Here r(x, y) is a 3 x 3 matrix depending on x, y 2, which consists of
first order derivatives of gr(x, y) with respect to x multiplied by rp[(y) and
the derivatives of rp(x), 0 _< /" _< k. So, thanks again to the special choice of

r=0, i= 1, 2, we see that r(x,y)is smooth on x . On the other
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hand, since both terms on the right side of (11) belong to Wz()’, R[dlU]
z(.Q)+/-. Hence, in view of ii) in {}2 and the fact remarked after (11), we

finally obtain from (11)

(13) 8ZI- (dlu)(t, x) &. q(x, y)du(t, y)dy + 8A (R[du]) (t, x).

4. We give a sketch of the proof of (4). Fix t [0, T]. Note that the
pressure p(t, x) is a solution of a certain Neumann problem in (see the
proof of Theorem 3 in [3]). Then by using Gagliardo-Nirenberg’s inequality
and by applying a limit argument, we obtain (see [2] for the counterpart of
this inequality)

(14) u(t)IIs u<O> Ilsexp(C tl F u(v)It-(9) + u(v)

This estimate is given in [10]. In addition, we have

(15) IV u(t)1.,) N C <ll u(o)IIo + 1 + <1 + log+ u(t)II)ldu(t)

Here log+r’-- logr for r 1, 0 for 0 K r< 1. Noting that
du(t) Iz-<a)= [rot u(t)Iz-<a), and combining (14)-(16), we get the desired

estimate (4) in the same way as in [2]. So we give the proof of the estimate

(15). The estimate (16) is proved more directly. First, since the terms of (6)
L  (o)Iioare orthogonal, we obtain from the fact that u(t)IIo

R R

(17) g 2(t)a(x) IL-<a) ]l u(0)11o E IVa(x)
i=1 i=1

Next, since r(x, y) in (12) is smooth on D x D, we get by using Sobolev’s
inequality and Theorem 10.5 in [1]
(18) [VSza(R[dxu])(t) [z-(a, c lgsza21(R[dxu])(t)

C lR[du] (t)[w,,(a C[du(t)
for p > 3. In view of (6), (13), it remains to show pointwise estimates of the

of p(x)wr(t, x), 0 r k, where wr(t, x) flr (x, g)(g)gradient

x du(t, y)dy. To do this, we introduce diffeomorphisms {r),=x such that
each rmaps ronto Vrwhichis contained in N+ {x] Ix[ < 1, xa > 0},
and r F corresponds to a part of a {x[[ x I< 1, xa= 0}. In addition,
{ (0, @) } *r= must be taken so as to be an admissible boundary coordinate
system (see Definition 7.5.2 and Lemma 7.5.1 in [7]). Fix 1 N r K k and
omit suffix r from or, wr, r, and so on. It is easy to see that w satisfies the
boundary conditions of (8) on F, if and only if Nt N ONa/Oa 0
on a where (x) and (t, ) (-)*w(t, x) as 2-forms. Then
we observe that each of ON/O i 1 2, satisfies also the same boundary
conditions as above on a. Define two differential operators A-
b(x)OE + B(x), i 1,2, which act on 2-forms v on , by Av *(O/O).
Here b(x), E, B(x) are smooth functions on , the 3 x 3 unit matrix, 3 x 3
matrices depending smoothly on x , respectively. It is obvious that

= b 0 on F, i 1,2, and each Aw satisfies the same boundary
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conditions as in (8) on (3 /. Hence we have
A (Ap2w) F(t, x) in ,

(19)
(Ap.w) x n =0, 17. (Av.w) 0 on , i 1,2,

where F(t, x) (-Aoldlu + A[-A, oa]w + [-A, A]q.w) (t, x). Then,
by the same reasoning as used to show (9), we obtain (ADaw)(t, x)=

leg(x, y)F(t, y)dy, i 1,2. So, a of differentialregarding as a system

operators (see (7.2.14) in [7]), we have for i 1,2,

(AaDaw) (t, x) fe 6, g(x, y)F(t, y)dy [., A]qaw(t, x).(20)

Note that A is also defined on 1-forms by the same way as above. To esti-

mate the first term on the right side of (20), we introduce an auxiliary func-
tion (x) C2(Ra) such that ’= 1 for Ix I< 1, "= 0 for Ix I-> 2, and
divide this term into two terms,

f ((x Y)/P)(2,x g(x, y) (A,qidlu) (t, y)dy

-fe {1-((x., y)/p)}(a,x g(x, y) (A,odu) (t, y)dy,
1/4

where 0 < p <_ P0 with P0 small enough. Taking p"-p0 if u Ila <- P0 :=
u I1-4 otherwise, as in pp. 65-66 in [2] we obtain from (10)

(21) fe (,x g(X, y) (A,qdu) (t,y)dy lL.,e,
<- C {1 + log+ u(t) II} d,u(t, x)1-(9) + C.

By arguments similar to that used for deriving (18), we get

(22)

for p > 3. Further, by HOlder’s inequality and Theorem 10.5 in [1], we

deduce from (10) that

(23) fes.,xg(X, )(A[--A, o.]w + [-A,A]ow)(t,y)dlr:.(e
<- C w(t) I,,) <- c du(t) ],,) <- C du(t) I,-,, i 1,2.

Accordingly, we conclude from (6), (13), (17)-(18), and (21)-(23) that the
maximum norms of two tangential derivatives on are estimated by the
terms of the right side of (15). Since the normal derivative of a solenoidal
vector field is expressed as a sum of the tangential derivatives and the com-
ponents of the vorticity, we get finally the estimate (15) on a suitable neigh-

borhood of the boundary. We can also prove the estimate (15) on a subset of
far from the boundary in a similar way. Thus we end the proof of (15).
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