16. Some Generalizations of the Unicity Theorem of Nevanlinna

By Nobushige TODA

Department of Mathematics, Nagoya Institute of Technology (Communicated by Kiyosi ITÔ, M. J. A., March 12, 1993)

1. Introduction. Let f(z) be a transcendental meromorphic function in $|z| < \infty$ and let S(f) be the set of meromorphic functions a(z) in $|z| < \infty$ which satisfy

$$T(r, a) = o(T(r, f)) \ (r \rightarrow \infty).$$

We consider $\bar{C} = C \cup \{\infty\}$ to be a subset of S(f). We put for $a \in S(f)$ $E(f = a) = \{z : f(z) - a(z) = 0\}.$

More than sixty years ago, R. Nevanlinna proved the following theorem, which is called the Uniqity Theorem.

Theorem A. Let f_1 and f_2 be transcendental meromorphic functions in $|z| < \infty$. If for five distinct values a_1, \ldots, a_5 of \bar{C}

$$E(f_1 = a_j) = E(f_2 = a_j) \ (j = 1, ..., 5),$$

then $f_1 = f_2$ ([2], p. 109, see also [1], p. 48).

The following theorem was used to prove Theorem A in [2].

Theorem B. For any $q(\geq 3)$ distinct values a_1, \ldots, a_q of \bar{C} ,

(1)
$$(q-2)T(r,f) < \sum_{j=1}^{q} \bar{N}(r,a_j) + S(r,f)$$

([2], p. 70).

The functions $f_1(z) = e^z$, $f_2(z) = e^{-z}$, with $a_1 = 0$, $a_2 = 1$, $a_3 = -1$ and $a_4 = \infty$ show that Theorem A is best ([2], p. 111).

It is an open problem to generalize Theorem A to the case when a_1, \ldots, a_5 belong to S(f) ([3]). This is neither trivial nor easy since we do not have an inequality corresponding to (1) for a_1, \ldots, a_q of S(f) except when q=3. When q=3, we have the following theorem.

Theorem C. Suppose that a_1 , a_2 and a_3 are distinct in S(f). Then we have

$$(1 + o(1)) T(r, f) < \sum_{j=1}^{3} \bar{N}(r, 1/(f - a_{j})) + S(r, f)$$

as $r \rightarrow \infty$ (see [1], p. 47).

It is a very interesting open problem whether (1) holds for distinct a_1, \ldots, a_q in S(f) ([1], p. 47; cf. [4], Satz 1).

The purpose of this paper is to give some generalizations of Theorem A by making use of Theorem C. We use the standard notation of the Navanlinna theory of meromorphic functions ([1], [2]) and we use ${}_{n}C_{k}=n!/(n-k)!k!$ as the binomial coefficient.

2. Lemmas. We shall give some lemmas in this section. Let f be a transcendental meromorphic function in $|z| < \infty$.

Lemma 1. If a_1, \ldots, a_7 are distinct elements of S(f), then

$$\left(\frac{7}{3} + o(1)\right)T(r, f) < \sum_{i=1}^{7} \bar{N}(r, 1/(f - a_i)) + S(r, f)$$

as $r \rightarrow \infty$.

Proof. For any distinct integers s, t, u such that $1 \le s$, t, $u \le 7$, we have from Theorem C

$$(1 + o(1)) T(r, f) < \bar{N}(r, 1/(f - a_s)) + \bar{N}(r, 1/(f - a_t)) + \bar{N}(r, 1/(f - a_u)) + S(r, f)$$

as $r \to \infty$. Since there are ${}_{7}C_{3}$ different combinations when we choose three elements from a_{1}, \ldots, a_{7} , we obtain

$$_{7}C_{3}(1+o(1))T(r,f) < {}_{6}C_{2}\sum_{i=1}^{7}\bar{N}(r,1/(f-a_{i})) + S(r,f)$$

as $r \to \infty$, which reduces to the inequality to be proved.

Lemma 2. If a_1, \ldots, a_6 are distinct elements of S(f), then

$$\left(\frac{5}{2} + o(1)\right)T(r, f) < \sum_{j=1}^{5} \bar{N}(r, 1/(f - a_j)) + \frac{5}{2}\bar{N}(r, 1/(f - a_6)) + S(r, f)$$

$$as \ r \to \infty.$$

Proof. For any distinct integers p, q such that $1 \le p$, $q \le 5$, we have from Theorem C

$$(1 + o(1)) T(r, f) < \bar{N}(r, 1/(f - a_p)) + \bar{N}(r, 1/(f - a_q)) + \bar{N}(r, 1/(f - a_p)) + S(r, f)$$

as $r \to \infty$. Since there are ${}_5C_2$ different combinations when we choose two elements from a_1,\ldots,a_5 , we obtain

$$_{5}C_{2}(1+o(1))T(r,f) < {}_{4}C_{1}\sum_{j=1}^{5}\bar{N}(r,1/(f-a_{j})) + {}_{5}C_{2}\bar{N}(r,1/(f-a_{6})) + S(r,f)$$

as $r \rightarrow \infty$, which reduces to the inequality to be proved.

Lemma 3. If a_1, \ldots, a_5 are distinct elements of S(f), then

$$(3 + o(1)) T(r, f) < \sum_{j=1}^{3} \bar{N}(r, 1/(f - a_{j})) + 3 \{\bar{N}(r, 1/(f - a_{4})) + \bar{N}(r, 1/(f - a_{5}))\} + S(r, f)$$

as $r \rightarrow \infty$.

Proof. By Theorem C, we have for
$$j = 1, 2, 3$$

$$(1+o(1)) T(r, f) < \bar{N}(r, 1/(f-a_j)) + \bar{N}(r, 1/(f-a_4)) + \bar{N}(r, 1/(f-a_5)) + S(r, f)$$

as $r \to \infty$. Adding these inequalities for j = 1, 2 and 3, we easily obtain our lemma.

3. Theorems. Let f_1 and f_2 be transcendental meromorphic functions in $|z| < \infty$.

Theorem 1. If for seven distinct elements a_1, \ldots, a_7 which belong to $S(f_1) \cap S(f_2)$

$$E(f_1 = a_j) = E(f_2 = a_j) \ (j = 1,...,7),$$

then $f_1 = f_2$.

Proof. We suppose that f_1 and f_2 are not identical. We have

(2)
$$\left(\frac{7}{3} + o(1)\right) T(r, f_k) < \sum_{j=1}^{7} \bar{N}(r, 1/(f_k - a_j)) + S(r, f_k)$$
 $(k = 1, 2)$ as $r \to \infty$ by Lemma 1. We write $N_j(r) = \bar{N}(r, 1/(f_1 - a_j)) = \bar{N}(r, 1/(f_2 - a_j))$ $(j = 1, ..., 7)$.

We then have from (2) as $r \rightarrow \infty$

(3)
$$\left(\frac{7}{3} + o(1)\right) \left\{ T(r, f_1) + T(r, f_2) \right\} < 2 \sum_{j=1}^{7} N_j(r) + S(r, f_1) + S(r, f_2)$$

 $< 2 \left\{ T(r, f_1) + T(r, f_2) \right\} + S(r, f_1) + S(r, f_2)$

since

$$\sum_{j=1}^{7} N_j(r) \le \bar{N}(r, 1/(f_1 - f_2)) \le T(r, f_1 - f_2) + O(1)$$

$$\le T(r, f_1) + T(r, f_2) + O(1).$$

Thus we have

$$\left(\frac{1}{3} + o(1)\right) \{T(r, f_1) + T(r, f_2)\} = S(r, f_1) + S(r, f_2)$$

as $r \to \infty$, which is impossible. f_1 and f_2 must be identical.

Theorem 2. If there are five distinct elements a_1, \ldots, a_5 in $S(f_1) \cap S(f_2)$, b_1 in $S(f_1)$ and b_2 in $S(f_2)$ such that b_1 and b_2 are different from a_1, \ldots, a_5 and such that

(i)
$$E(f_1 = a_i) = E(f_2 = a_i)$$
 $(j = 1, ..., 5)$

(ii)
$$\limsup_{r \to \infty} \frac{\bar{N}(r, 1/(f_k - b_k))}{T(r, f_k)} = \delta_k < \frac{1}{5}$$
 $(k = 1, 2),$ then $f_1 = f_2$.

Proof. Suppose that f_1 and f_2 are not identical. We have for k=1,2

(4)
$$\left(\frac{5}{2} + o(1)\right)T(r, f_k) < \sum_{j=1}^{5} \bar{N}(r, 1/(f_k - a_j)) + \frac{5}{2}\bar{N}(r, 1/(f_k - b_k)) + S(r, f_k)$$

as $r \rightarrow \infty$ by Lemma 2. If we write

 $N_j(r) = \bar{N}(r, 1/(f_1 - a_j)) = \bar{N}(r, 1/(f_2 - a_j)) \quad (j = 1, ..., 5),$ we have from (4) as $r \to \infty$

$$\left(\frac{5}{2} + o(1)\right) \left\{T(r, f_1) + T(r, f_2)\right\}
< 2 \sum_{j=1}^{5} N_j(r) + \frac{5}{2} \sum_{k=1}^{2} \bar{N}(r, 1/(f_k - b_k)) + S(r, f_1) + S(r, f_2)
< \left(2 + \frac{5}{2} \delta\right) \left\{T(r, f_1) + T(r, f_2)\right\} + S(r, f_1) + S(r, f_2)$$

by the hypothesis (ii), where δ is any number satisfying

$$\max (\delta_1, \delta_2) < \delta < \frac{1}{5}.$$

We also used the inequality

$$\sum_{j=1}^{5} N_j(r) \le \bar{N}(r, 1/(f_1 - f_2)) \le T(r, f_1 - f_2) + O(1)$$

$$\le T(r, f_1) + T(r, f_2) + O(1).$$

Thus we have

$$(1 - 5\delta + o(1))\{T(r, f_1) + T(r, f_2)\} = S(r, f_1) + S(r, f_1)$$

as $r \to \infty$, which is impossible as $1 - 5\delta > 0$. f_1 and f_2 must be identical.

Corollary 1. If f_1 and f_2 are entire and if there are five distinct elements a_1, \ldots, a_5 in $S(f_1) \cap S(f_2) - \{\infty\}$ such that

$$E(f_1 = a_i) = E(f_2 = a_i) \ (j = 1, ..., 5),$$

then $f_1 = f_2$.

Theorem 3. If there are three distinct elements a_1 , a_2 and a_3 in $S(f_1) \cap S(f_2)$, two distinct elements b_1 and c_1 in $S(f_1)$, two distinct elements b_2 and c_2 in $S(f_2)$ such that b_1 , c_1 , b_2 and c_2 are different from a_1 , a_2 and a_3 and such that

(i)
$$E(f_1 = a_j) = E(f_2 = a_j)$$
 $(j = 1, 2, 3)$

$$(ii) \limsup_{r \to \infty} \frac{\bar{N}(r,\,1/(f_k-\,b_k))\,+\,\bar{N}(r,\,1/(f_k-\,c_k)}{T(r,\,f_k)} = \delta_k < \frac{1}{3} \quad (k=1,\,2)\,,$$
 then $f_1=f_2$.

Proof. We suppose that f_1 and f_2 are not identical. We have for k=1, 2 as $r \to \infty$

$$(3 + o(1)) T(r, f_k) < \sum_{j=1}^{3} \bar{N}(r, 1/(f_k - a_j)) + 3\bar{N}(r, 1/(f_k - b_k)) + 3\bar{N}(r, 1/(f_k - c_k)) + S(r, f_k)$$

by Lemma 3. If we write

 $N_j(r)=\bar{N}(r,\,1/(f_1-a_j))=\bar{N}(r,\,1/(f_2-a_j))$ $(j=1,\,2,\,3),$ as in the proof of Theorem 2 we have as $r\to\infty$

$$(3 + o(1)) \{T(r, f_1) + T(r, f_2)\}$$

$$< 2 \sum_{j=1}^{3} N_j(r) + 3 \sum_{k=1}^{2} \{\bar{N}(r, 1/(f_k - b_k)) + \bar{N}(r, 1/(f_k - c_k))\}$$

$$+ S(r, f_1) + S(r, f_2)$$

$$<(2+3\delta)\{T(r,f_1)+T(r,f_2)\}+S(r,f_1)+S(r,f_2)$$

by the hypothesis (ii), where δ is any number satisfying

$$\max(\delta_1, \delta_2) < \delta < \frac{1}{3}.$$

Thus we have

$$(1 - 3\delta + o(1))\{T(r, f_1) + T(r, f_2)\} = S(r, f_1) + S(r, f_2)$$

as $r \to \infty$, which is impossible since $1 - 3\delta > 0$. f_1 and f_2 must be identical.

Corollary 2. In Theorem 3, if b_k and c_k are Picard exceptional values for $f_k(k=1,2)$, we have $f_1=f_2$.

This is because the hypothesis (ii) is evidently satisfied in this case.

Remark. For meromorphic functions $f_1(z)$ and $f_2(z)$ in |z| < 1 which satisfy

$$\limsup_{r \to \infty} \frac{T(r, f_k)}{\log 1 / (1 - r)} = \infty \ (k = 1, 2),$$

similar results to Theorems 1, 2 and 3 remain valid (cf. [1], p. 49).

References

- [1] W. K. Hayman: Meromorphic Functions. Oxford at the Clarendon Press (1964).
- [2] R. Nevanlinna: Le théorème de Picard-Borel et la théorie des fonctions méromor-

- phes. Gauthier-Villars, Paris (1929).
- [3] M. Shirosaki: An extension of unicity theorem for meromorphic functions (to appear in Tohoku Math. J.).
- [4] N. Steinmetz: Eine Verallgemeinerung des zweiten Nevanlinnaschen Hauptsatzes. J. reine und angew. Math., **368**, 134-141 (1986).