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1. Introduction. Let f(z) be a transcendental meromorphic function in
[z[ < oo and let S(f) be the set of meromorphic functions a(z) in z[ < oo

which satisfy
T(r, a) o(T(r, f)) (r-* oo).

We consider ’ C IJ {oo} to be a subset of S(f). We put for a S(f)
E(f a) {z’f(z) a(z) 0}.

More than sixty years ago, R. Nevanlinna proved the following theorem,
which is called the Uniqity Theorem.

Theorem A. Let fl and f be transcendental meromorphic functions in
[zl < oo. Iffor five distinct values al,. ,a of

E(f a) E{f a) (j 1,...,5),
thenf f ([2], p. 109, see also [1], p. 48).

The following theorem was used to prove Theorem A in [2].
Theorem B. For any q( >_ 3) distinct values a,...,aq of C,

q

(1) (q- 2)T(r, f) < 2 N(r, a) + S(r, f)
j=l

([2], p. 70).
The functions f(z) e,f(z) e with a 0, a 1, a

and a4 oo show that Theorem A is best ([2], p. 111).
It is an open problem to generalize Theorem A to the case when

a,... ,a belong to S(f) ([3]). This is neither trivial nor easy since we do
not have an inequality corresponding to (1) for a,... ,a of S(f) except
when q 3. When q 3, we have the following theorem.

Theorem C. Suppose that a, a and a are distinct in S(f). Then we

have

(1 W o(1)) T(r, f) < , N(r, 1/(f a)) + S(r, f)
j--1

as r---* c (see [1], p. 47).
It is a very interesting open problem whether (1) holds for distinct

a,...,aq in S(f) ([1], p. 47" cf. [4], Satz 1).
The purpose of this paper is to give some generalizations of Theorem A

by making use of Theorem C. We use the standard notation of the Navanlin-
na theory of meromorphic functions ([1], [2]) and we use nC
u!/(u- k)!k! as the binomial coefficient.

2. Lemmas. We shall give some lemmas in this section. Let f be a
transcendental meromorphic function in lzl ( c.
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Lemma 1. If al,... ,aT are distinct elements of S(f), then

+ o(1) T(r, f) < 2 N;(r, 1/(f- a)) + S(r, )

as r .
Proo For any distinct integers s, t, u such that 1 g s, t, u g 7, we

have fom Theorem C
(1 + o(1))T(r, f) < (r, 1/(f- a)) + (r, 1/(f a))

+ N(r, 1/(f-- a,)) + S(r, f)
as r . Since there ae 7C different combinations when we choose three
elements from a,...,aT, we obtain

C(1 + o(1))T(r, < C Z N(r, 1/(f a)) + S(r,
=1

as r , which reduces to the inequality to be proved.
Lemma 2. If a,...,a are distinct elements of S(f), then

+ o(1) T(r, f) < N N(r, 1/(f- a)) + g(, 1/(f- a)) + S(r, f)

as r .
Proo For any distinct integers p, q such that 1 p, q 5, we have

from Theorem C-
(1 + o(1))T(r, f) < N(r, 1/(f a)) + N(r, 1/(f aq))

+ N(r, 1/(f- a)) + S(r,
as r . Since there are C different combinations when we choose two
elements from a,...,as, we obtain

C(1 + o(1))T(r, f) < C Z N(r, 1/(f a))
+ Cz N(r, 1/(f a)) + S(r, f)

as r , which reduces to the inequality to be proved.
Lemma 3. If a,... ,as are distinct elements of S(f), then

3

(3 + o(1))T(r, < Z N(r, 1/(f a)) + 3 (N(r, 1/(f a))
j=l

+ (r, 1/(f a)) } + S(r, f)
as .

Proo By Theorem C, we have for j 1, 2, 3
(1 + o(1))T(r, f) < (r, 1/(f-- a)) + (r, 1/(f a))

+ N(r, 1/(f-- a)) + S(r, f)
as r . Adding these inequalities for j 1, 2 and 3, we easily obtain our

lemma.
3. Theorems. Let and be transcendental meromorphic functions in

Theorem 1. If for seven distinct elements al,... ,a7 which belong to

E= a) E(f= a) (j’= 1,...,7),

We suppose that f and f2 are not identical. We have



No. 3] Unicity Theorem 63

(2) + o(1) T(r,f) < ,N(r, 1/(A a)) + S(r,f) (k= 1, 2)

as r--* co by Lemma 1. We write

N(r) (r, 1/(f- a)) (r, 1/(f a)) (/= 1,...,7).

We then have from (2) as r--* co

(a/ + o( T(r, + T(r, A/< N N(r + S(r, + S(r,l

< T(r, A + T(r, / + S(r, + S(r,fO
since

E N(r) <_ (r, 1/(f- f) _< T(r, f- f) + 0(1)
i--1

<_ T(r, f) + T(r, f) + 0(1).
Thus we have

(31- + o(1))(T(r, + T(r, S(r,ft) + S(r,f)

as r-- co, which is impossible, fl and f must be identical.
Theorem 2. If there are five distinct elements at,...,as in S(f) f S(f2),

b in S(f) and b. in S(f) such that bl and b= are different from a,... ,a and
such that
(i) E(fl at) E(f at) (j" 1,...,5)

N(r 1/(f b)

_
(ii) limr-.ooSUp T(r, f,) 6 < (k 1, 2),

then f f.
Proof Suppose that f and f are not identical. We have for k 1, 2

(4) + o(1) T(r, f) < N N(r, 1/(f- a)) + N(r, 1/(f- b))

+ S(r, A
as r--* co by Lemma 2. If we write

N (r) N(r, 1/(f a)) Nr(r, 1/(f a)) (j 1,... ,5),
we have from (4) as r--, co

(- + o(1)){T(r, f) + T(r, f)}

< 2 E N(r) + (r, 1/(f- b,)) + S(r, f) + S(r, f)
j=l k=l

< (2 +- 6)(T(r, f)+ T(r, f)} + S(r, f)+ S(r, f)

by the hypothesis (ii), where is any number satisfying
1max (c, c) < < -.

We also used the inequality

N(r) <_ N(r, 1/(f f)) <_ T(r, f fO + 0(1)
1=1

<_ T(r, f) + T(r, f) + 0(1).
Thus we have
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(1 56 + 0(1)) { T(r, f) + T(r, fz) } S(r, f) + S(r,f)
as r--- c, which is impossible as 1 56 > 0. fl and fz must be identical.

Corollary 1. If f and fz are entire and if there are five distinct elements

al,...,a in S(fl) f3 S(f2)- {c} such that
E(f a) E(fz= a) (j= 1,...,5),

then f
Theorem

S(fz), two distinct elements b and c in S(fx), two distinct elements b2 and c2 in

S(fz) such that b, Q, b2 and cz are different from a, az and a and such that
(i) E(f= at) =E(f2=at) (j= 1, 2, 3)

N(r, 1/(f b)) + N(r, 1/(f c)(ii) limr-sup T(r, fe) 6e < (k= 1, 2),

then A f.
Proof. We suppose that fl and f2 are not identical. We have for k 1,

2 as r--- c
3

(3 -+- o(1))T(r, re) < (r,1 at)) + 3(r,1 be))

by Lemma 3. If we write

N(r) N(r, 1/(f a)) N(r, 1/(fz a)) (j 1, 2, 3),
as in the proof of Theorem 2 we have as r---

(3 + o(1))(T(r, A) + T(r, f)}

< 2 Ny(r) + 3 Z {N(r, 1/(A- b,)) + N(r, 1/(fe- ce))}
1=1 k=l

+ S(r, f) + S(r, fz)
< (2 + 36){T(r, fx) + T(r, fz)} + S(r, f) + S(r, fz)

by the hypothesis (ii), where 6 is any number satisfying
1max(6, 6z) < 6 < -.

Thus we have
(1 36 + o(1)){T(r, f) + T(r, fz)} S(r, f) + S(r,

as r--* c, which is impossible since I 36 > 0. f and fz must be identical.
Corollary 2. In Theorem 3, if be and ce are Picard exceptional values for

f (k 1, 2), we have fx f.
This is because the hypothesis (ii) is evidently satisfied in this case.
Remark. For meromorphic functions f(z) and fz(z) in zl< 1 which

satisfy
T(r, fe) (k 1, 2),lim sup log 1/(1 --r)

c

similar results to Theorems 1, 2 and 3 remain valid (cf. [1], p. 49).
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