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Pseudo Volume Forms and their Applications
to Holomorphic Mappings

By Pei-Chu HU *) and Chung-Chun YANG* *)

(Communicated by Heisuke HIRONAKA, M.J.A., May 12, 1993)

1. A Generalization of Sehwarz’s lemma. Let M and N be complex
manifolds of dimension m and n, respectively and f :M--* N denote a holo-
morphic mapping. Let 0 and o) be the associated 2-forms of hermitian met-
rics dSM and ds on M and N, respectively. Let be a non-negative
(m, m)-form of class C on M and define a function u by
(1) uO’.
For a function on M, define
(2) Ea f* (Ricw) Ric.
If rank off-> b > 0 with u defined to be
(3) Ubf*(o0b) A 0m-b

then u can be estimated as follows.
Theorem 1.1. Let M be a complete Kahler manifold with the Ricci curva-

ture bounded from below and let N be a hermitian manifold with the Ricci curva-
ture bounded from above by a negative constant K2. Suppose the rank off b >
O. If there exist a constant K, a non-negative function bounded from above and
a non-negative (m, m)-form 0 of class C such that

R- Tr(E) >_ K, sup u < oo,
where R is the scalar curvature of M, then K < O, and

0 < sl) <- bK. sp .
As consequences and applications of Theorem 1.1, we exhibit some spe-

cial and wellknown cases as follows.
Special ease 1. Suppose

m=n=b, 1, #=f*(w’).
Then E=0 un= l Hence we have 0< supu< ( K )nnK2 which includes
the results of Yau [8] and Chern [1].

Special case 2. Suppose
m> n= b, 1, q= im_f*(w) A o A

where p is a holomorphic (m n)-form on M. We can prove
E-0, ull,
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Hence we have

0 < sup u <_
nK. sup l9

Also if M Cm, we can choose p such that sup[9 12 < oo. For the Eucli-
dian metric on Cm, we have R 0 K1.

Corollary 1.2. If N is a hermitian manifold with Ricci curvature bounded

from above by a negative constant, then any holomorphic mapping f Cm-- N
has everywhere rank less than n.

Kodaira [4] proved this Corollary when N is pseudo canonical.
Special ease 3. Suppose

f * (w) A 0m-.
Then u 1. Assume that R _> K (constant), and that / is a positive constant.
Then Theorem 1.1 implies

sup Tr(E) > K.
Further if M Cm and if ds is the Euclidian metric, then

sup Tr(E) > O.
Speeial ease 4. If n > m b and if M is Stein, Stoll [6] constructed

a pseudo volume form q) F*[ton], where F is an effective Jacobian section,
such that E1 1. For more detail on pseudo volume forms, see Lang [5].

2. A main formula for pseudo volume forms. Let M be a complex main-

fold of dimension m with a parabolic exhaustion function
[0, oo) and set

v= ddCv a= dclog v A (dd Iog v)
For a subvariety A of pure dimension k(_< m) in M and a(p, p)-form x on
M with 0 <-- p <-- k, define

A (r, x) r- x A v-, A(r, s x) A (t x) t[rl

where A[r] {x A v(x) < r}. Then
N(r, s,A) := A(r, s;1) (p= 0)

is just the valence function of A. For a non-negative function p on M, set

m(r p) F (Iog p)a, re(r, s p) m(r p) m(s;p).
[r]

Let p be a continuous function on M which is C outside a proper analytic
subset D, and which locally in terms of complex coordinates can be express-
ed as

(4) p(z) h(z) lg(z)
where q is some fixed rational number> 0, h is in C and > 0, and g is

holomorphic not identically zero. Then the following formula can be obtained
(5) M(r, s ddlog p) -+- qN(r, s, D) re(r, s ;p),
where D (g 0) is the (zero) divisor of p, which implies FMT for di-
visors (see [3], [6]).

Let be a pseudo volume form on N of order q (see Lang [5]). Locally
in terms of complex coordinates can be expressed as

i=1



No. 5] Pseudo Volume Forms and their Applications 151

where p(z) satisfies the properties (4). Let/2 be a volume form on N and de-
fine a function by
(6)
Then (6) yields, iff( D,
(?) M(r, s ;f*(Rc)) + qN(r, sf-(D)) M(r, s ;f*(Rc9))

+m(r,s;of).
Here D is the zero divisor of F. Let be a pseudo volume form on M of
order q0 and define a function h on M by
(8) q hv.
Then from (7), we obtain
(9) M(r, s(Ric) + qoN(r, s,(D,)) Ric(r, s) + re(r, s h)
where Ric(r, s) is the Ricci function of (see Stoll [6]). Hence the Stoll’s
formula ([6], Th. 15, 5) and Plucker Difference Formula (see Stoll [7]) follow
from (9).

3. A generalization of a Kodaira-Griffiths theorem. We continue with
the situation f :M---* N of 2 where we assume that N is pseudo canonical
(or general type). Here we set
(10) E f*(Ric[O 2Ricq.

Let L be a positive holomorphic line bundle on N and let o9 > 0 be the curv-
ature form (or Chern form) of L for a hermitian metric in L. By Kodaira [4],
Lang [5], there exist integers p and k such that L is very ample, and

P(L) "= dimH(N, K L-) > 0
where Kg is the canonical line bundle on N. Let B, be the base locus of the
linear system H(N, K ( L-) and let

B fq B,
where the intersection extends over all k with Pe(L) > 0. As applications
of the formulas (7) and (9), we obtain

Theorem 3.1. Assume M, N, L, , and f as above. Suppose that rank

off >-- b > 0 and define a function u by

(11) Uhf* ((.Ob) A Vm-b.
Iff(m) Bo U D, then for 2 O,

+ qN(r, s, f-(D)) aqoN(r, s, Do)
+ m(r ub/ f) + ce log r

where c > 0 is a constant, while T(r, s, L) M(r, s f*(w)), and where

the notation II, means that the inequality holds except on an open set I with _f r" dr
< co for some > O.

Let M be affine algebraic, and take
(13) -- w, im_f*(w) A p A Cp
where q is a holomorphic (m b)-form on M. According to Griffiths-King

[3] and Stoll [6] there exist a parabolic exhaustion
0, u_< 1, and

lira Ric(r, s)/log r < co.
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Hence Theorem 3.1 implies
Corollary 3.2. Suppose that rank of f >-- b > O, and f(M) f Bp. If M is

affine algebraic, and iffor some > 0
e (b) := lim sup M(r, s E)/log r

then f is rational.
If m --> n b rank of f, then E 0. Hence Corollary 3.2 yields
Corollary 3.3 (Griffiths). Let M be affine algebraic. Then any holomorphic

mapping f M- N whose image contains an open set is necessarily rational.
Corollary 3.4 (Kodaira). Any holomorphic mapping f Cm--’ N has every-

where rank less than n.
Corollary 3.5. Take M= Cm. If rank off>_ b > 0 and if e(b) <_ 0 for

some , > O, then f(C’n)
_

Bp.
4. A generalization of Landau-Sehottky theorem. Here we consider a

holomorphic mapping f C’(s) N a pseudo canonical variety N, where
m

2 2}c’n<s) {Z <z ,Z") c" zl -2:lzl <S
i--’l

Define r by z’(z) z +, and take ,(2 and M C(s). Also define h,
and E by (8), (12), and (10), respectively.

Theorem 4.1. Let N be a pseudo canonical variety, and xo a point on N
such that ce(Xo)=/: 0 for an element c H(N, K L-P). Assume that

f(O) Xo, h(O) > 1, and that
k sup u < o, M(r, 0;Ea) _< 0.

Then there exists a constant R R(b, k, p, ,, k) with the following properties.
For any holomorphic mapping f C’n (s) N with rank of f >-- b > O, the in-
equality s <_ R holds.

Corollary 4.2. Let N be a pseudo canonical variety, and Xo point on N such
that ce(Xo) =/: 0 for an element c H(N, K L-P). Then there exists an
absolute constant R with the following properties: For any holomorphic mapping

f C’(s) N with f(O)= xo and h(O) > 1, the inequality s >_ R holds,
where h is defined by

i_f*(D) A o A hv
for some holomorphic (m n)-form q9 on C (s).

Here m_> n rank of f. If m n, this corollary was proved by
Kodaira [4]. Note that, $2 can be chosen so that h(0) is just the Jacobian of f
at the origin.

Corollary 4.3. Let f Cm--* N be a holomorphic mapping from Cm to a
pseudo canonical variety N with n > m rank of f For an effective Jacobian
section F, define a function u by

F[D] uf*(oo) A v-If sup ub < oo for some b with 1 <-- b <- m, then f(C")
Note that by using Theorem 3.1, when m _> 2, the condition sup

u < co in the corollary can be replaced by the following weak condition:
I] m(r ;u) <_ o(T(r, s, L)) + o(log r).

Generally, if m 1, f(C) is contained in the Green-Griffiths set (see [2], [5]).
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