32. On the Stabilizer of Companion Matrices

By Javier GOMEZ-CALDERON

Department of Mathematics, The Pennsylvania State University, U. S. A (Communicated by Shokichi IYANAGA, M. J. A., May 12, 1993)

Let R denote a commutative ring with identity. Let $f(x) = x^n - \sum_{i=0}^{n-1} b_i x^i$ denote a monic polynomial with coefficients in R. Let C(f) denote the companion matrix of f(x) defined by

$$C(f) = \begin{pmatrix} 0 & 0 & \cdots & 0 & b_0 \\ 1 & 0 & \cdots & 0 & b_1 \\ \cdot & \cdot & \cdots & \cdot & \cdot \\ 0 & 0 & \cdots & 1 & b_{n-1} \end{pmatrix}.$$

In this note we describe the set of $n \times n$ matrices with entries in R that commute with C(f). If $R = GR(p^t, m)$ denote the Galois ring (see note) of order p^{tm} and f(x) is irreducible over the residue field GR(p, m), then we show that there are $p^{tmn}n \times n$ matrices that commute with C(f) and that $p^{(t-1)mn}(p^{mn}-1)$ of these matrices are invertible.

We now state and prove our main result.

Theorem 1. Let R denote a commutative ring with identity. For $n \geq 2$, let $M = M_{n \times n}(R)$ denote the ring of $n \times n$ matrices with entries in R. Let $f(x) = x^n - \sum_{i=0}^{n-1} b_i x^i$ denote a monic polynomial in R[x]. Let C(f) denote the companion matrix of f(x). Then, $A = (a_{ij}) \in M$ commutes with C(f) if and only if $a_{1j} = b_0 a_{n,j-1}$ and $a_{ij} = a_{i-1,j-1} + b_{i-1} a_{n,j-1}$ for all $2 \leq i, j \leq n$.

Proof. We have

$$AC(f) = (a_{ij})C(f) = \begin{pmatrix} a_{12} & a_{13} & \cdots & a_{1n} & \sum_{j=1}^{n} b_{j-1} & a_{1j} \\ a_{22} & a_{23} & \cdots & a_{2n} & \sum_{j=1}^{n} b_{j-1} & a_{2j} \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ a_{n2} & a_{n3} & \cdots & a_{nn} & \sum_{j=1}^{n} b_{j-1} & a_{nj} \end{pmatrix}$$

and

$$C(f)A = C(f)(a_{ij}) =$$

$$\begin{pmatrix} b_0 a_{n1} & b_0 a_{n2} & \cdots & b_0 a_{nn} \\ a_{11} + b_1 a_{n1} & a_{12} + b_1 a_{n2} & \cdots & a_{1n} + b_1 a_{nn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1,1} + b_{n-1} a_{n1} & a_{n-1,2} + b_{n-1} a_{n2} & \cdots & a_{n-1,n} + b_{n-1} a_{nn} \end{pmatrix}$$

Therefore, defining $a_{0j} = 0$ for $1 \le j \le n$, $A = (a_{ij})$ commutes with C(f) if and only if

(1)
$$a_{ij} = a_{i-1,j-1} + b_{i-1}a_{n,j-1}$$

and

(2)
$$\sum_{k=1}^{n} a_{ik} b_{k-1} = a_{i-1,n} + b_{i-1} a_{nn}$$

for $1 \le i \le n$ and $2 \le j \le n$. Therefore, we will complete the proof of the theorem if we show that (1) implies (2).

We now proceed by induction on n.

(a)
$$n = 2$$
.

$$\sum_{k=1}^{2} a_{1k}b_{k-1} = a_{11}b_0 + a_{12}b_1 = a_{11}b_0 + (a_{01} + b_0a_{21})b_1 = a_{11}b_0 + a_{21}b_0b_1,$$

$$\sum_{k=1}^{2} a_{2k}b_{k-1} = a_{21}b_0 + a_{22}b_1 = a_{21}b_0 + (a_{11} + b_1a_{21})b_1 = a_{11}b_1 + a_{21}(b_0 + b_1^2),$$

$$a_{02} + b_0a_{22} = b_0(a_{11} + b_1a_{21}) = a_{11}b_0 + a_{21}b_0b_1, \text{ and}$$

$$a_{12} + b_1a_{22} = a_{01} + b_0a_{21} + b_1(a_{11} + b_1a_{21}) = a_{11}b_1 + a_{21}(b_0 + b_1^2).$$
Therefore, $\sum_{k=1}^{2} a_{1k}b_{k-1} = a_{i-1,2} + b_{i-1}a_{22}$ for $1 \le i \le 2$.

(b) Assume that the theorem is true for n - 1. For $1 \le i, j \le n - 1$ define $a'_{0j} = 0, b'_j = b_{j+1}$ and a'_{ij} by

$$a'_{ij} = \begin{cases} a_{i+1,j} & \text{if } i > j-1 \\ a_{i+1,i+1} - a_{11} & \text{if } i = j-1. \\ a_{i+1,j} - b_0 a_{n,j-i-1} & \text{if } i < j-1 \end{cases}$$

Thus,

$$a'_{ij} = \begin{cases} a_{i+1,j} = a_{i,j-1} + b_i a_{n,j-1} & \text{if } i > j-1 \\ a_{i+1,i+1} - a_{11} = a_{ii} + b_i a_{ni} - a_{11} & \text{if } i = j-1 \\ a_{i+1,j} - b_0 a_{n,j-i-1} = a_{i,j-1} + b_i a_{n,j-1} - b_0 a_{n,j-i-1} & \text{if } i < j-1 \end{cases}$$

 $= a'_{i+1,j-1} + b'_{i-1} a'_{n-1,j-1}$ for all $1 \le i \le n-1$ and $1 < j \le n-1$. Therefore, we can apply our induction assumption on n-1 to obtain

$$\sum_{k=1}^{n-1} a'_{ik} b'_{k-1} = a'_{i-1,n-1} + b'_{i-1} a'_{n-1,n-1} \text{ for } 2 \le i \le n-1.$$

We are ready to prove (2). Our work follows:

$$\sum_{k=1}^{n} a_{ik} b_{k-1} = a_{i1} b_{0} + \sum_{k=2}^{i-1} a_{ik} b_{k-1} + a_{ii} b_{i-1} + \sum_{k=i+1}^{n} a_{ik} b_{k-1}$$

$$= a_{i1} b_{0} + \sum_{k=2}^{i-1} a'_{i-1,k} b'_{k-2} + (a'_{i-1,i} + a_{11}) b_{i-1}$$

$$+ \sum_{k=i+1}^{n} (a'_{i-1,k} + b_{0} a_{n,k-i}) b_{k-1}$$

$$= a_{i1} b_{0} + a_{11} b_{i-1} + \sum_{k=2}^{n} a'_{i-1,k} b'_{k-2} + b_{0} \sum_{k=i+1}^{n} a_{n,k-i} b_{k-1}$$

$$= a_{i1} b_{0} + a_{11} b_{i-1} + \sum_{k=2}^{n} (a'_{i-2,k-1} + b'_{i-2} a'_{n-1,k-1}) b'_{k-2}$$

$$+ b_{0} \sum_{k=i+1}^{n} a_{n,k-i} b_{k-1}$$

$$= a_{i1} b_{0} + a_{11} b_{i-1} + \sum_{k=1}^{n-1} a'_{i-2,k} b'_{k-1} + b'_{i-2} \sum_{j=1}^{n-1} a'_{n-1,j} b'_{j-1}$$

$$+ b_{0} \sum_{k=i+1}^{n} (a_{k,k-i+1} - a_{k-1,k-i})$$

No. 5]

J. GOMEZ-CALDERON

[Vol. 69(A),

$$= a_{i1} b_0 + a_{11}b_{i-1} + a'_{i-3,n-1} + b'_{i-3} a'_{n-1,n-1} + b'_{i-2}(a'_{n-2,n-1} + b'_{n-2} a'_{n-1,n-1}) + b_0(a_{n,n-i+1} - a_{i1}) = a_{11} b_{i-1} + a_{i-2,n-1} - b_0 a_{n,n-i+1} + b_{i-2} a_{n,n-1} + b_{i-1} a_{n-1,n-1} - b_{i-1} a_{11} + b_{i-1} b_{n-1} a_{n,n-1} + b_0 a_{n,n-i+1} = a_{i-1,n} + b_{i-1} a_{nn}.$$

This completes the proof of the Theorem 1.

The following operators D and L_B will simplify our next result.

$$D\begin{pmatrix}a_1\\a_2\\ \cdot\\a_n\end{pmatrix} = \begin{pmatrix}0\\a_1\\ \cdot\\a_{n-1}\end{pmatrix} \text{ and } L_B\begin{pmatrix}a_1\\a_2\\ \cdot\\a_n\end{pmatrix} = \begin{pmatrix}b_0a_n\\b_1a_n\\ \cdot\\b_{n-1}a_n\end{pmatrix} \text{ where } B = \begin{pmatrix}b_0\\b_1\\ \cdot\\b_{n-1}\end{pmatrix}.$$

Corollary 2. With notation as in Theorem 1, $A \in M$ commutes with C(f) if and only if $A = \text{Col}[A_1, A_2, \ldots, A_n]$ for some $A_1 \in \mathbb{R}^n$ and $A_i = DA_{i-1} + L_BA_{i-1}$ for $i = 2, 3, \ldots, n$.

Corollary 3. Let F denote the finite field of order q. Let $f(x) = x^n - \sum_{i=0}^{n-1} b_i x^i$ denote a monic irreducible polynomial with coefficients in F. Then, all nonzero matrices that commute with C(f) are invertible.

Proof. By Corollary 2, there are exactly q^n distinct $n \times n$ matrices that commute with C(f). Now, according to L. E. Dickson in [1: p. 235], the number of $n \times n$ nonsingular matrices over F that commute with C(f) is $q^n - 1$. Therefore, all nonzero matrices commuting with C(f) are invertible.

Corollary 4. Let F denote the finite field of order q. Assume that $f(x) = x^n - b \in F[x]$ is irreducible. Let $H = H(a_1, a_2, \ldots, a_n; b)$ denote a $n \times n$ matrix of the form

$$H = \begin{pmatrix} a_1 & ba_n & \cdots & ba_3 & ba_2 \\ a_2 & a_1 & \cdots & ba_4 & ba_3 \\ \cdot & \cdot & \cdots & \cdot & \cdot \\ a_{n-1} & a_{n-2} & \cdots & a_1 & ba_n \\ a_n & a_{n-1} & \cdots & a_2 & a_1 \end{pmatrix}.$$

Then, H is singular if and only if $a_1 = a_2 = \ldots = a_n = 0$.

Corollary 5. Let F denote the finite field of order q. Assume that $f(x) = x^3 - b \in F[x]$ is irreducuble. Then the equation

$$x^3 + by^3 + b^2z^3 = 3bxyz$$

has only the trivial solution x = y = z = 0 over the field F.

Proof. This follows from

$$det \begin{pmatrix} x & bz & by \\ y & x & bz \\ z & y & x \end{pmatrix} = x^3 + by^3 + b^2z^3 - 3bxyz.$$

Corollary 6. Let $GR(p^{t}, m)$ denote the Galois ring (see note below) with order p^{tm} . Let $f(x) = x^{n} - \sum_{i=0}^{n-1} b_{i}x^{i}$ denote a monic polynomial over $GR(p^{t}, m)$. Assume $\overline{f(x)}$ is irreducible over the field GR(p, m). Then, there are p^{tmn} distinct $n \times n$ matrices with entries in $GR(p^{t}, m)$ that commute with C(f) and $p^{(t-1)mn}(p^{mn} - 1)$ of these matrices are invertible.

Proof. By Corollary 2, there are p^{tmn} distinct matrices that commute with

C(f). Further, each of these matrices A are determined by their first column values a_1, a_2, \ldots, a_n . So, we write $A = A(a_1, a_2, \ldots, a_n)$. Now by Corollary 3, $\overline{A} = \overline{A}$ $(\overline{a}_1, \overline{a}_2, \ldots, \overline{a}_n) = \overline{0}$ if and only if det $\overline{A} = 0$. Hence, $A = A(a_1, a_2, \ldots, a_n)$ is invertible if and only if $\overline{a}_i \neq \overline{0}$ for some $i, 1 \leq i \leq n$. Therefore, there are $p^{tmn} - p^{(t-1)mn}$ invertible matrices over the ring $GR(p^t, m)$ that commute with C(f).

Note. Galois rings are finite extensions of the residue class ring $Z/p^t Z$ of integers. In particular, if p is a prime and $t, m \ge 1$ are integers, $GR(p^t, m)$ denotes the Galois ring of order p^{tm} which can be obtained as a Galois extension of $Z/p^t Z$ of degree m. Hence $GR(p^t, m)$ can be viewed as $(Z/p^t Z)[x]/(f)$ where f is a monic basic irreducible in $(Z/p^t Z)[x]$ of degree m. Thus $GR(p^t, 1) = Z/p^t Z$ and $GR(p, m) = GF(p^m)$, the finite field of order p^m . Further details concerning Galois rings can be found in Chapter XVI of McDonald [2].

References

- [1] L. E. Dickson: Linear Groups. Leipzig (1901).
- [2] B. R. McDonald: Finite Rings with Identity. Marcel Dekker, Inc., New York (1974).