32. On the Stabilizer of Companion Matrices

By Javier Gomez-CALDERON

Departmemt of Mathematics, The Pennsylvania State University, U. S. A (Communicated by Shokichi IYANAGA, M. J. A., May 12, 1993)

Let R denote a commutative ring with identity. Let $f(x)=x^{n}-$ $\sum_{i=0}^{n-1} b_{i} x^{i}$ denote a monic polynomial with coefficients in R. Let $C(f)$ denote the companion matrix of $f(x)$ defined by

$$
C(f)=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & b_{0} \\
1 & 0 & \cdots & 0 & b_{1} \\
. & . & \cdots & . & . \\
0 & 0 & \cdots & 1 & b_{n-1}
\end{array}\right)
$$

In this note we describe the set of $n \times n$ matrices with entries in R that commute with $C(f)$. If $R=G R\left(p^{t}, m\right)$ denote the Galois ring (see note) of order $p^{t m}$ and $f(x)$ is irreducible over the residue field $G R(p, m)$, then we show that there are $p^{t m n} n \times n$ matrices that commute with $C(f)$ and that $p^{(t-1) m n}\left(p^{m n}-1\right)$ of these matrices are invertible.

We now state and prove our main result.
Theorem 1. Let R denote a commutative ring with identity. For $n \geq 2$, let $M=M_{n \times n}(R)$ denote the ring of $n \times n$ matrices with entries in R. Let $f(x)=x^{n}-\sum_{i=0}^{n-1} b_{i} x^{i}$ denote a monic polynomial in $R[x]$. Let $C(f)$ denote the companion matrix of $f(x)$. Then, $A=\left(a_{i j}\right) \in M$ commutes with $C(f)$ if and only if $a_{1 j}=b_{0} a_{n, j-1}$ and $a_{i j}=a_{i-1, j-1}+b_{i-1} a_{n, j-1}$ for all $2 \leq i, j \leq n$.

Proof. We have
and

$$
A C(f)=\left(a_{i j}\right) C(f)=\left(\begin{array}{lllll}
a_{12} & a_{13} & \cdots & a_{1 n} & \sum_{j=1}^{n} b_{j-1} a_{1 j} \\
a_{22} & a_{23} & \cdots & a_{2 n} & \sum_{j=1}^{n} b_{j-1} a_{2 j} \\
\cdot & \cdot & \cdots & \cdot & \cdot \\
a_{n 2} & a_{n 3} & \cdots & a_{n n} & \sum_{j=1}^{n} b_{j-1} a_{n j}
\end{array}\right)
$$

$$
\begin{aligned}
C(f) A= & C(f)\left(a_{i j}\right)= \\
& \left(\begin{array}{cccc}
b_{0} a_{n 1} & b_{0} a_{n 2} & \cdots & b_{0} a_{n n} \\
a_{11}+b_{1} a_{n 1} & a_{12}+b_{1} a_{n 2} & \cdots & a_{1 n}+b_{1} a_{n n} \\
\cdot & \cdot & \cdots & \cdot \\
a_{n-1,1}+b_{n-1} a_{n 1} & a_{n-1,2}+b_{n-1} a_{n 2} & \cdots & a_{n-1, n}+b_{n-1} a_{n n}
\end{array}\right)
\end{aligned}
$$

Therefore, defining $a_{0 j}=0$ for $1 \leq j \leq n, A=\left(a_{i j}\right)$ commutes with $C(f)$ if and only if

$$
\begin{equation*}
a_{i j}=a_{i-1, j-1}+b_{i-1} a_{n, j-1} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{n} a_{i k} b_{k-1}=a_{i-1, n}+b_{i-1} a_{n n} \tag{2}
\end{equation*}
$$

for $1 \leq i \leq n$ and $2 \leq j \leq n$. Therefore, we will complete the proof of the theorem if we show that (1) implies (2).

We now proceed by induction on n.
(a) $n=2$.

$$
\begin{aligned}
& \sum_{k=1}^{2} a_{1 k} b_{k-1}=a_{11} b_{0}+a_{12} b_{1}=a_{11} b_{0}+\left(a_{01}+b_{0} a_{21}\right) b_{1}=a_{11} b_{0}+a_{21} b_{0} b_{1}, \\
& \sum_{k=1}^{2} a_{2 k} b_{k-1}=a_{21} b_{0}+a_{22} b_{1}=a_{21} b_{0}+\left(a_{11}+b_{1} a_{21}\right) b_{1}=a_{11} b_{1}+a_{21}\left(b_{0}+b_{1}^{2}\right), \\
& a_{02}+b_{0} a_{22}=b_{0}\left(a_{11}+b_{1} a_{21}\right)=a_{11} b_{0}+a_{21} b_{0} b_{1}, \text { and } \\
& a_{12}+b_{1} a_{22}=a_{01}+b_{0} a_{21}+b_{1}\left(a_{11}+b_{1} a_{21}\right)=a_{11} b_{1}+a_{21}\left(b_{0}+b_{1}^{2}\right) .
\end{aligned}
$$

Therefore, $\sum_{k=1}^{2} a_{1 k} b_{k-1}=a_{i-1,2}+b_{i-1} a_{22}$ for $1 \leq i \leq 2$.
(b) Assume that the theorem is true for $n-1$.

For $1 \leq i, j \leq n-1$ define $a_{0 j}^{\prime}=0, b_{j}^{\prime}=b_{j+1}$ and $a_{i j}^{\prime}$ by

$$
a_{i j}^{\prime}= \begin{cases}a_{i+1, j} & \text { if } i>j-1 \\ a_{i+1, i+1}-a_{11} & \text { if } i=j-1 . \\ a_{i+1, j}-b_{0} a_{n, j-i-1} & \text { if } i<j-1\end{cases}
$$

Thus,

$$
\begin{aligned}
& a_{i j}^{\prime}=\left\{\begin{array}{lr}
a_{i+1, j}=a_{i, j-1}+b_{i} a_{n, j-1} & \text { if } i>j-1 \\
a_{i+1, i+1}-a_{11}=a_{i i}+b_{i} a_{n i}-a_{11} & \text { if } i=j-1 \\
a_{i+1, j}-b_{0} a_{n, j-i-1}=a_{i, j-1}+b_{i} a_{n, j-1}-b_{0} a_{n, j-i-1} & \text { if } i<j-1
\end{array}\right. \\
& =a_{i+1, j-1}^{\prime}+b_{i-1}^{\prime} a_{n-1, j-1}^{\prime} \quad \text { for all } 1 \leq i \leq n-1 \text { and } 1<j \leq n-1 .
\end{aligned}
$$

Therefore, we can apply our induction assumption on $n-1$ to obtain

$$
\sum_{k=1}^{n-1} a_{i k}^{\prime} b_{k-1}^{\prime}=a_{i-1, n-1}^{\prime}+b_{i-1}^{\prime} a_{n-1, n-1}^{\prime} \text { for } 2 \leq i \leq n-1
$$

We are ready to prove (2). Our work follows:

$$
\begin{aligned}
\sum_{k=1}^{n} a_{i k} b_{k-1}= & a_{i 1} b_{0}+\sum_{k=2}^{i-1} a_{i k} b_{k-1}+a_{i i} b_{i-1}+\sum_{k=i+1}^{n} a_{i k} b_{k-1} \\
= & a_{i 1} b_{0}+\sum_{k=2}^{i-1} a_{i-1, k}^{\prime} b_{k-2}^{\prime}+\left(a_{i-1, i}^{\prime}+a_{11}\right) b_{i-1} \\
& \quad+\sum_{k=i+1}^{n}\left(a_{i-1, k}^{\prime}+b_{0} a_{n, k-i}\right) b_{k-1} \\
= & a_{i 1} b_{0}+a_{11} b_{i-1}+\sum_{k=2}^{n} a_{i-1, k}^{\prime} b_{k-2}^{\prime}+b_{0} \sum_{k=i+1}^{n} a_{n, k-i} b_{k-1} \\
= & a_{i 1} b_{0}+a_{11} b_{i-1}+\sum_{k=2}^{n}\left(a_{i-2, k-1}^{\prime}+b_{i-2}^{\prime} a_{n-1, k-1}^{\prime}\right) b_{k-2}^{\prime} \\
& +b_{0} \sum_{k=i+1}^{n} a_{n, k-i} b_{k-1} \\
= & a_{i 1} b_{0}+a_{11} b_{i-1}+\sum_{k=1}^{n-1} a_{i-2, k}^{\prime} b_{k-1}^{\prime}+b_{i-2}^{\prime} \sum_{j=1}^{n-1} a_{n-1, j}^{\prime} b_{j-1}^{\prime} \\
& \quad+b_{0} \sum_{k=i+1}^{n}\left(a_{k, k-i+1}-a_{k-1, k-i}\right)
\end{aligned}
$$

$$
\begin{aligned}
&= a_{i 1} b_{0}+ \\
& \quad a_{11} b_{i-1}+a_{i-3, n-1}^{\prime}+b_{i-3}^{\prime} a_{n-1, n-1}^{\prime} \\
& \quad+b_{i-2}^{\prime}\left(a_{n-2, n-1}^{\prime}+b_{n-2}^{\prime} a_{n-1, n-1}^{\prime}\right)+b_{o}\left(a_{n, n-i+1}-a_{i 1}\right) \\
&= a_{11} b_{i-1}+ \\
&= a_{i-2, n-1}-b_{0} a_{n, n-i+1}+b_{i-2} a_{n, n-1}+b_{i-1} a_{n-1, n-1} \\
& \quad-b_{i-1} a_{11}+b_{i-1} b_{n-1} a_{n, n-1}+b_{0} a_{n, n-i+1} a_{n n} .
\end{aligned}
$$

This completes the proof of the Theorem 1.
The following operators D and L_{B} will simplify our next result.

$$
D\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\cdot \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
a_{1} \\
\cdot \\
a_{n-1}
\end{array}\right) \text { and } L_{B}\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\cdot \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{0} a_{n} \\
b_{1} a_{n} \\
\cdot \\
b_{n-1} a_{n}
\end{array}\right) \text { where } B=\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\cdot \\
b_{n-1}
\end{array}\right)
$$

Corollary 2. With notation as in Theorem $1, A \in M$ commutes with $C(f)$ if and only if $A=\operatorname{Col}\left[A_{1}, A_{2}, \ldots, A_{n}\right]$ for some $A_{1} \in R^{n}$ and $A_{i}=D A_{i-1}$ $+L_{B} A_{i-1}$ for $i=2,3, \ldots, n$.

Corollary 3. Let F denote the finite field of order q. Let $f(x)=x^{n}$ -$\sum_{i=0}^{n-1} b_{i} x^{i}$ denote a monic irreducible polynomial with coefficients in F. Then, all nonzero matrices that commute with $C(f)$ are invertible.

Proof. By Corollary 2, there are exactly q^{n} distinct $n \times n$ matrices that commute with $C(f)$. Now, according to L. E. Dickson in [1: p. 235], the number of $n \times n$ nonsingular matrices over F that commute with $C(f)$ is $q^{n}-1$. Therefore, all nonzero matrices commuting with $C(f)$ are invertible.

Corollary 4. Let F denote the finite field of order q. Assume that $f(x)=x^{n}-b \in F[x]$ is irreducible. Let $H=H\left(a_{1}, a_{2}, \ldots, a_{n} ; b\right)$ denote a $n \times n$ matrix of the form

$$
H=\left(\begin{array}{lllll}
a_{1} & b a_{n} & \cdots & b a_{3} & b a_{2} \\
a_{2} & a_{1} & \cdots & b a_{4} & b a_{3} \\
\cdot & \cdot & \cdots & \cdot & \cdot \\
a_{n-1} & a_{n-2} & \cdots & a_{1} & b a_{n} \\
a_{n} & a_{n-1} & \cdots & a_{2} & a_{1}
\end{array}\right)
$$

Then, H is singular if and only if $a_{1}=a_{2}=\ldots=a_{n}=0$.
Corollary 5. Let F denote the finite field of order q. Assume that $f(x)=x^{3}-b \in F[x]$ is irreducuble. Then the equation

$$
x^{3}+b y^{3}+b^{2} z^{3}=3 b x y z
$$

has only the trivial solution $x=y=z=0$ over the field F.
Proof. This follows from

$$
\operatorname{det}\left(\begin{array}{ccc}
x & b z & b y \\
y & x & b z \\
z & y & x
\end{array}\right)=x^{3}+b y^{3}+b^{2} z^{3}-3 b x y z
$$

Corollary 6. Let $G R\left(p^{t}, m\right)$ denote the Galois ring (see note below) with order $p^{t m}$. Let $f(x)=x^{n}-\sum_{i=0}^{n-1} b_{i} x^{i}$ denote a monic polynomial over $G R\left(p^{t}, m\right)$. Assume $\overline{f(x)}$ is irreducible over the field $G R(p, m)$. Then. there are $p^{\text {tmn }}$ distinct $n \times n$ matrices with entries in $G R\left(p^{t}, m\right)$ that commute with $C(f)$ and $p^{(t-1) m n}\left(p^{m n}-1\right)$ of these matrices are invertible.

Proof. By Corollary 2, there are $p^{t m n}$ distinct matrices that commute with
$C(f)$. Further, each of these matrices A are determined by their first column values $a_{1}, a_{2}, \ldots, a_{n}$. So, we write $A=A\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Now by Corollary $3, \bar{A}=\bar{A}\left(\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{n}\right)=\overline{0}$ if and only if $\operatorname{det} \bar{A}=0$. Hence, $A=A\left(a_{1}\right.$, $\left.a_{2}, \ldots, a_{n}\right)$ is invertible if and only if $\bar{a}_{i} \neq \overline{0}$ for some $i, 1 \leq i \leq n$. Therefore, there are $p^{t m n}-p^{(t-1) m n}$ invertible matrices over the ring $G R\left(p^{t}, m\right)$ that commute with $C(f)$.

Note. Galois rings are finite extensions of the residue class ring $Z / p^{t} Z$ of integers. In particular, if p is a prime and $t, m \geq 1$ are integers, $G R\left(p^{t}, m\right)$ denotes the Galois ring of order $p^{t m}$ which can be obtained as a Galois extension of $Z / p^{t} Z$ of degree m. Hence $G R\left(p^{t}, m\right)$ can be viewed as $\left(Z / p^{t} Z\right)[x] /(f)$ where f is a monic basic irreducible in $\left(Z / p^{t} Z\right)[x]$ of degree m. Thus $G R\left(p^{t}, 1\right)=Z / p^{t} Z$ and $G R(p, m)=G F\left(p^{m}\right)$, the finite field of order p^{m}. Further details concerning Galois rings can be found in Chapter XVI of McDonald [2].

References

[1] L. E. Dickson: Linear Groups. Leipzig (1901).
[2] B. R. McDonald: Finite Rings with Identity. Marcel Dekker, Inc., New York (1974).

