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1. Introduction. Let p be an odd prime. Let g be a primitive root mod-
ulo p and g; the least positive residue of g’ modulo p for every i > 0. Let
u= (@G—1)/2 and let { =, = cos2n/p) + isin(2w/p) be a primitive
pth root of unity. For every ¢ = 0, we put
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These are cyclotomic units of @( + {™) and ¢,,; = ¢; for each i = 0. Let
E, be the group of units of Q({ + ™ and E_ the subgroup of E, generated
by cyclotomic units, ie., E; = <ggé,,. . .,su_1>. Let h, be the class number
of Q({ + ¢™Y). Then it is well known that h, = [E,: E.]. For every i = 0,
we let ¢, = 0 or 1 according as g; is positive or negative.

Let L be a real subfield of Q({) of degree m. We denote by E; the
group of units of L and by EcL the subgroup of E; generated by the cycloto-
mic units. We let d; = 0 or 1 by

Lo

d, = mZ Ciom; (mod 2)
i=0

for every i = 0. We note that if L= Q({+ {™"), then ¢; =d, for every i 20
and that d,,,; = d, for every ¢ 2 0. We then define the matrix
M, = @i )o<i j<m—

of degree m. Let o, = m — rankp M,;, where F, = Z/2Z. Then it is easily
shown that #EgL/EéL = 2% where E;L denotes the group of totally positive
units in E¢ .

In this note we shall give a generalization of Theorem 3 in Uchida [5].
That is, we shall prove the following

Theorem. Let I and p be two odd primes such that p = 1(mod)). Let a =1
be the integer such that 2°||(p — 1) /1. Let K be the imaginary subfield of
Q(L,) of degree 2°1, K, the maximal real subfield of K and L the subfield of K,
of degree I. Let hy be the relative class number of K. Let hg, and hy be the class
numbers of K, and L, respectively. Suppose that 2 is a primitive root modulo l.
Then the following are equivalent.

W) 2| kg, (D) 2| kg, Gi) 2]k, (v) o, =1—1.

2. Lemmas. To prove our theorem, we need the following three lem-
mas.
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Lemma 1. Let L be a real subfield of Q(L,) of odd prime degree I. Let f be
the order of 2 modulo I. Then o, = 0 (mod f).

Lemma 2. Let K be an imaginary subfield of Q(L,). Then hy is even if
and only if pg, > 0. '

Lemma 3. Let L be a real subfield of Q(L,). Let F be a subfield of L such
that L/ F is a 2-extension. Then o, = 0 if and only if o = 0.

Proof of Lemma 1. Let # ECL/EZL =2’ Then b=1— ©L, because
# EgL /EZL = 2°% a5 noted above. Let ¢ be a generator of the Galois group of
L over Q. Here we consider the homomorphism ¢ from E into the direct
sum of [ copies of {£1}, which is defined by

n - (szgn(n) sign(n®, ... ,sign(n” ),

where sign(y ‘) =y ‘|/77 for each 1. Clearly the kernel of ¢ is Ec
# ‘P(Ec,_) = 2" Now G(L/Q) naturally acts on @(E¢), that is, go(T])
(") for any 1 € E;, and 7 € G(L/Q). Therefore (ay, ay, . . .,a,_)° =
(ay, a,, . ..,a,_,, a) for any (aq, a,,...,a,_,) € go(E ) It easﬂy follows
that the orbit of every element of go(Ec) except (1,1,...,1) and (—1, .
—1) has [ elements. Hence 2° = 2 (mod D). Thus we obtam b=1 (modf)
Since f is a divisor of [ — 1, we have the de31red congruence.

Proof of Lemma 2. We shall show that Ay = det M, , (mod 2). First we
deal with the case K = Q({). Let 6 be a primitive (p — l)th root of unity. It
is well known that

hyx = 2 )u [ FOF6% - F(6"™ |,
where F denotes the polynomlal F(X) P g, X’ (cf. [1] p.358). Since
6“ = —1, we have F(ﬁk) = (g, — g,,)0" for odd k. Noting that
(1—6F©6") =234 (g, — g,+1)0 for odd k and that ITj,(1 — 607%™

= 2, we obtain
p”“h: =| GG -- G(e“) l,

where G(X) = 247 (g, — g,)X’. We set b, = g, — g;,,. Then b,,; = — b
Therefore it follows from a well known calculatlon that
GG -G(0"™) = £ det(biy)oci, j<ur-
On the other hand we have
2b; = by, * pc;,

where s denotes the integer such that g; = 2 (cf. Kummer [3]). So ¢; = b,
(mod 2). Therefore we obtain det(b,,;) = det(b,,;,,) = det(c,,;) (mod 2).
Thus we get the desired congruence in the case K = Q(0).

In the case K # Q({), using a similar argument as above, we get the
congruence.

Proof of Lemma 3. We may assume that L/F is an extension of degree
2. We define d] for F just as d; were defined for L. Putting [L: Q] = 2% and

u = 2nt, we have
2t—1

= 2 ¢y, (mod2).
j=0
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Therefore d; = d; + d,., (mod 2). Here we put two matrices A and B of de-
gree # as follows:

= (disozi, j<n-1v B = (i) o<i<n-1, n<j<on—1-

A B

w=(45)
Hence, since M, = A + B (mod 2), we obtain
M, B|_ (M, B
M, Al | 0 M,
On the other hand, by definition of p, we see that o, = 0 (resp. pp = 0) is
equivalent to det M, = 1 (resp. det M, = 1) (mod 2). Therefore Lemma 3 is
proved.

3. Proof of Theorem. It is well known that (iii) implies (ii) and that (ii)
implies (i). By Lemma 2 we see that if hK is even, then og > 0, so that o, > 0
by Lemma 3. Since 2 is a primitive root modulo /, o, = 0 or I — 1 by Lem-
ma 1. Therefore it is shown that (i) implies (iv), so that it suffices to prove
that if o, = I — 1, then h; is even.

Suppose that o, = I — 1 and h;.is odd. Let 4; be the narrow class num-
ber of L. Then h; /h, = [E; : EX] = [Eé;_: E;]l = 2'' where E; is the
group of totally positive units of E;. Let L be the narrow Hilbert 2-class
field of L. Since G(L/L) is an elementary 2-group, L is written in the form:

l: = L(\/CY_;, \/—C_Y_z,.. o Vat—1),

where each @; is an integer of L. Since L(ya;) /L is unramified at all prime
ideals of L, there exists an ideal @, such that (a;) = a’. Therefore
2 X h; implies that a; is principal. So we may replace a; by a unit of L for
each . Moreover, noting that h, = [E;: E¢ ] (cf. [2]), we mdy assume that
each a; is a cyclotomic unit of L. We denote by E, the subgroup of ECL
generated by a,, a,, . .., a,_; and by the elements of EC Then E, /EC
N Eg /Eg, # {1}, because #E /E;, = # E,/E;, =2 and # Ec,/E¢,
= 2. Thus we can find a cyclotomic unit  in E; N EC which is not con-
tained in Ec Obviously L # L(/a) € L. Since « is totally positive, L(/a) /
L is also unramified at all infinite prime divisors of L. This implies that 4, is
even, which is a contradiction. This completes the proof.

Numerical example. Let ! = 3. Then, among positive integers < 10000,
there are 70 primes p = 1 (mod 3) which satisfy the condition of Theorem
(cf. [4]). Next let [ = 5. Then, among positive integers < 50000, we have the
following 18 primes p = 1 (mod 5) which satisfy the condition of Theorem:
p = 941, 2161, 3301, 3931, 8831, 10181, 12671, 13411, 16831, 18661,
21391, 24421, 26141, 32371, 35851, 39821, 43151, 44531.

Then

det M, = (mod 2).
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