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This is a continuation of [1] which will be referred to as (II). In this pap-
er, we shall reprove Theorem 2 of (II) 1) in a setting which suggests us a
direction in further studies inspired by Stickelberger’s theorem. We follow,
in general, notation and conventions of (II). This paper is logically indepen-
dent of (II).

1. Quotient space H(). Let K/k be a finite Galois extension of
number fields K, k of finite degree over Q with the Galois group
G G(K/k). Let II be the set of prime ideals of K unramified for K/k.
We shall call a map 0" II---, K a function of type (S) if it satisfies the fol-
lowing conditions"
(S.1) 0(s) p()s for all s G,
(S.2) there is an wo Z[G] such that (0()) for all II.
Using a prime p of k which splits completely in K, one sees that co is
well-defined by q) and that w belongs to the center Z[G]o of ZIG]. If we de-
note by the set of all maps 9 of type (S), then becomes a multiplicative
group in an obvious way and the map 0 --- co becomes a homomorphism of

into the additive group of ZIG] o whose kernel consists of all maps

o" II--* or, the group of units of
As in (II), for q , co ZIG], we put

G (9 ()) (s a ()s () },
(1.1) G*(p(3)) {s G ;(((3))s= (q(3))},

G() {s G ;()s }.
Note that we use the convention ( s, t G. Since co, Z[G]o we
have, by (S.2),
(1.2) G(*) G*(p()) G(p(3)) G(3)
where G(3) means the decomposition group of 3, i.e., G(3) G(3), 1
Z[G]. For an co Z[G]o, we shall put
(1.3) H(3) G() / G(3).

Write an co Z[G]o as
(1.4) o9 a(t)t.

tG

Since a a(t) is a class function on G, its Fourier expansion makes sense:
(1.5) a X axe

xIrr(G)

where Irr(G) denotes the set of C-irreducible characters of G. The Fourier
coefficients are

1) As for the statement, see the last line of this paper before Acknowledgement.
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1
2 a(t)(t) Z Irr(G).(1.6) az G[ ,

In order to describe the quotient space (1.3) in terms of characters,
write
(1.7) oo a(t)t . a(tu)tu.

tG tG/G(3) uG()
Then we have

(1.8) = II (t)R<t) with R(t) a(tu).
tG/G(3)

Since so) .tG a(s-lt) t, we have, by (1.8),

(1.9) s 1I (’)s-").
By the uniqueness of the prime decomposition of ideals, we obtain, from
(1.1), (1.8), (1.9),
(1.10) s G(3) => R(s-lt) R(t) for all t G.
Since R(t) ua<m) a(tu) .u azz (tu), we have, by (1.10),

(1.11) s H() <=> az , (Z(s-tu) z(tu)) =0, t G,
X uG(3)

where, by abuse of notation, we identified s G() with s mod G() in
H(). Hoping (1.11) as a starting step for a nonabelian theory, in the
sequel, we shall restrict ourselves to the case of abelian extensions K/k.

{}2. Abelian extensions. Notation being as in {}1, assume that K/k is

abelian. Then (1.11) may be written:

(2.1) ]az(x(s-) 1)x(t) ] X(u) --0 for all t G.
xG uG()

By the orthogonality of characters on groups G() and G/G(?3), one sees
that (2.1) is equivalent to

(2.2) az()(.(s) 1) --0 for all )(. G/G(3),
or to

(2.3) Z(s) 1 for all Z suchthatax 4= 0.
In view of (1.6), we get

(2.4) H($) {s G/G($) ;Z (s) 1 for all X such that

E a(t) :g (t) :/: 0}.
tG

{}3. Back to the l-th cyclotomic field. Let 1 be an odd prime and let
2z i/

k- Q() be the l-th cyclotomic field, e For a prime p 4: 1, let p be
a prime ideal in k such that pip.2) We may identify G G(k/) with the
cyclic group Ft <w> as usual. Thus, for an co F}< a(t)at Z[G],
(2.4) can be written as

(3.1) H(p,) {s Ft/(Ft)g’Z(s), 1 for all Z Ft/(Ft)g

such that a(t)#(t) :/: 0}.
tF

Now choose for o) an element in Z[G] with

(3.2) a(t) rest(t*), t*= t-
Note that l- 1 f "g, Np pe, g G / G(p) I.
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and for Z the character of F/(F)g
determined by Z(w) e g. Then we

have X(-- 1) X(w X(w)z--= (e)= (-- 1) L hence, X is an
oaa character of F if and only if f is odd. Furthermore, we have t;
a(t) (t) Et res(t*)(t) Et res,(t)(t*) (-- 1) e Et res(t)z(t)
(-- 1) -:=: Z(), which is 0 if is odd because 0 (I, )

=x vX () for any odd character of F
Let s w be any element in H(). Since the above odd character X

2i
satisfies the condition in (3.1), we must have I Z(s)- X(w) e= e e

hence g , so s rood (Ft)e= 1. In other words, H(p) 1. Now let J(p)
be the Jacobi sum considered in (II), i.e., the one such that f(p)= g(p),
g(p) being the Gauss sum. By the Stickelberger’s theorem f f(p) is a func-
tion of type (S) for the extension k/Q for which -- t res(t*)at.
Since H(p) 1, i.e., G(p) G(p) G*(p)), we have, by (1.2),

Q(p)) Q(p) if f is odd. (Theorem 2 of (II)).
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3) Q(p) denotes the decomposition field of p" Q(p) kGw).


