61. A Note on Jacobi Sums. III

By Takashi OnO
Department of Mathematics, The Johns Hopkins University, U.S.A. (Communicated by Shokichi IYANAGA, M. J. A., Sept. 13, 1993)

This is a continuation of [1] which will be referred to as (II). In this paper, we shall reprove Theorem 2 of (II) ${ }^{1)}$ in a setting which suggests us a direction in further studies inspired by Stickelberger's theorem. We follow, in general, notation and conventions of (II). This paper is logically independent of (II).
§1. Quotient space $H\left(\mathfrak{B}^{\omega}\right)$. Let K / k be a finite Galois extension of number fields K, k of finite degree over \boldsymbol{Q} with the Galois group $G=G(K / k)$. Let Π be the set of prime ideals \mathfrak{B} of K unramified for K / k. We shall call a map $\varphi: \Pi \rightarrow K^{\times}$a function of type (S) if it satisfies the following conditions:
(S.1) $\varphi\left(\mathfrak{P}^{s}\right)=\varphi(\mathfrak{P})^{s}$ for all $s \in G$,
(S.2) there is an $\omega_{\varphi} \in \boldsymbol{Z}[G]$ such that $(\varphi(\mathfrak{B}))=\mathfrak{B}^{\omega_{\varphi}}$ for all $\mathfrak{B} \in \Pi$.

Using a prime \mathfrak{p} of k which splits completely in K, one sees that ω_{φ} is well-defined by φ and that ω_{φ} belongs to the center $\boldsymbol{Z}[G]_{0}$ of $\boldsymbol{Z}[G]$. If we denote by Φ the set of all maps φ of type (S), then Φ becomes a multiplicative group in an obvious way and the map $\varphi \rightarrow \omega_{\varphi}$ becomes a homomorphism of Φ into the additive group of $\boldsymbol{Z}[G]_{0}$ whose kernel consists of all maps $\varphi: \Pi \rightarrow \mathfrak{o}_{K}^{\times}$, the group of units of o_{K}.

As in (II), for $\varphi \in \Phi, \omega \in \boldsymbol{Z}[G]$, we put

$$
\begin{align*}
& G(\varphi(\mathfrak{P}))=\left\{s \in G ; \varphi(\mathfrak{P})^{s}=\varphi(\mathfrak{P})\right\}, \\
& \left.G^{*}(\varphi(\mathfrak{B}))=\{s \in G ;(\mathfrak{P}))^{s}=(\varphi(\mathfrak{P}))\right\}, \tag{1.1}\\
& G\left(\mathfrak{P}^{\omega}\right)=\left\{s \in G ;\left(\mathfrak{P}^{\omega}\right)^{s}=\mathfrak{P}^{\omega}\right\} .
\end{align*}
$$

Note that we use the convention $\mathfrak{B}^{s t}=\left(\mathfrak{B}^{t}\right)^{s}, s, t \in G$. Since $\omega_{\varphi} \in \boldsymbol{Z}[G]_{0}$ we have, by (S.2),

$$
\begin{equation*}
G\left(\mathfrak{B}^{\omega_{\varphi}}\right)=G^{*}(\varphi(\mathfrak{P})) \supset G(\varphi(\mathfrak{F})) \supset G(\mathfrak{P}) \tag{1.2}
\end{equation*}
$$

where $G(\mathfrak{P})$ means the decomposition group of \mathfrak{B}, i.e., $G(\mathfrak{P})=G\left(\mathfrak{P}^{1}\right), 1 \in$ $\boldsymbol{Z}[G]$. For an $\omega \in \boldsymbol{Z}[G]_{0}$, we shall put

$$
\begin{equation*}
H\left(\mathfrak{B}^{\omega}\right)=G\left(\mathfrak{P}^{\omega}\right) / G(\mathfrak{P}) \tag{1.3}
\end{equation*}
$$

Write an $\omega \in \boldsymbol{Z}[G]_{0}$ as

$$
\begin{equation*}
\omega=\sum_{t \in G} a(t) t \tag{1.4}
\end{equation*}
$$

Since $a=a(t)$ is a class function on G, its Fourier expansion makes sense:

$$
\begin{equation*}
a=\sum_{\chi \in I r r(G)} a_{\chi} \chi \tag{1.5}
\end{equation*}
$$

where $\operatorname{Irr}(G)$ denotes the set of \boldsymbol{C}-irreducible characters of G. The Fourier coefficients are

[^0]\[

$$
\begin{equation*}
a_{\chi}=\frac{1}{|G|} \sum_{t \in G} a(t) \bar{\chi}(t), \quad \chi \in \operatorname{Irr}(G) \tag{1.6}
\end{equation*}
$$

\]

In order to describe the quotient space (1.3) in terms of characters, write

$$
\begin{equation*}
\omega=\sum_{t \in G} a(t) t=\sum_{t \in G / G(\mathfrak{F})} \sum_{u \in G(\mathfrak{B})} a(t u) t u . \tag{1.7}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\mathfrak{B}^{\omega}=\prod_{t \in G / G(\mathfrak{F})}\left(\mathfrak{P}^{t}\right)^{R(t)} \quad \text { with } R(t)=\sum_{u \in G(\mathfrak{F})} a(t u) \tag{1.8}
\end{equation*}
$$

Since $s \omega=\sum_{t \in G} a\left(s^{-1} t\right) t$, we have, by (1.8),

$$
\begin{equation*}
\mathfrak{B}^{s \omega}=\prod_{t}\left(\mathfrak{B}^{t}\right)^{R\left(s^{-1} t\right)} \tag{1.9}
\end{equation*}
$$

By the uniqueness of the prime decomposition of ideals, we obtain, from (1.1), (1.8), (1.9),
(1.10) $\quad s \in G\left(\Re^{\omega}\right) \Leftrightarrow R\left(s^{-1} t\right)=R(t) \quad$ for all $t \in G$.

Since $R(t)=\sum_{u \in G(\mathfrak{B})} a(t u)=\sum_{u} \sum_{\chi} a_{\chi} \chi(t u)$, we have, by (1.10),
(1.11) $s \in H\left(\Re^{\omega}\right) \Leftrightarrow \sum_{\chi} a_{\chi} \sum_{u \in G(\mathfrak{B})}\left(\chi\left(s^{-1} t u\right)-\chi(t u)\right)=0, t \in G$,
where, by abuse of notation, we identified $s \in G\left(\mathfrak{B}^{\omega}\right)$ with $s \bmod G(\mathfrak{P})$ in $H\left(\mathfrak{B}^{\omega}\right)$. Hoping (1.11) as a starting step for a nonabelian theory, in the sequel, we shall restrict ourselves to the case of abelian extensions K / k.
§2. Abelian extensions. Notation being as in $\S 1$, assume that K / k is abelian. Then (1.11) may be written:

$$
\begin{equation*}
\sum_{\chi \in \hat{G}} a_{\chi}\left(\chi\left(s^{-1}\right)-1\right) \chi(t) \sum_{u \in G(\mathfrak{B})} \chi(u)=0 \quad \text { for all } t \in G . \tag{2.1}
\end{equation*}
$$

By the orthogonality of characters on groups $G(\mathfrak{P})$ and $G / G(\mathfrak{P})$, one sees that (2.1) is equivalent to

$$
\begin{equation*}
a_{\chi}(\chi(s)-1)=0 \quad \text { for all } \chi \in \widehat{G / G(\mathfrak{P})}, \tag{2.2}
\end{equation*}
$$

or to

$$
\begin{equation*}
\chi(s)=1 \quad \text { for all } \chi \in \widehat{G / G(\mathfrak{P})} \text { such that } a_{\chi} \neq 0 \tag{2.3}
\end{equation*}
$$

In view of (1.6), we get

$$
\begin{align*}
& H\left(\mathfrak{P}^{\omega}\right)=\{s \in G / G(\mathfrak{P}) ; \chi(s)= 1 \text { for all } \chi \in \widehat{G / G(\mathfrak{P})} \text { such that } \tag{2.4}\\
&\left.\sum_{t \in G} a(t) \bar{\chi}(t) \neq 0\right\} .
\end{align*}
$$

§3. Back to the l-th cyclotomic field. Let l be an odd prime and let $k=\boldsymbol{Q}(\zeta)$ be the l-th cyclotomic field, $\zeta=e^{2 \pi i / l}$. For a prime $p \neq l$, let \mathfrak{p} be a prime ideal in k such that $\mathfrak{p} \mid p .{ }^{2)}$ We may identify $G=G(k / \boldsymbol{Q})$ with the cyclic group $\boldsymbol{F}_{l}^{\times}=\langle w\rangle$ as usual. Thus, for an $\omega=\sum_{t \in \boldsymbol{F}_{l}^{\times}} a(t) \sigma_{t} \in \boldsymbol{Z}[G]$, (2.4) can be written as

$$
\begin{gather*}
H\left(\mathfrak{p}^{\omega}\right)=\left\{s \in \boldsymbol{F}_{l}^{\times} /\left(\boldsymbol{F}_{l}^{\times}\right)^{g} ; \chi(s)=1 \text { for all } \chi \in \widehat{\boldsymbol{F}_{l}^{\times} /\left(\boldsymbol{F}_{l}^{\times}\right)^{g}}\right. \tag{3.1}\\
\text { such that } \left.\sum_{t \in \boldsymbol{F}_{l}^{\times}} a(t) \bar{\chi}(t) \neq 0\right\}
\end{gather*}
$$

Now choose for ω an element in $\boldsymbol{Z}[G]$ with

$$
\begin{equation*}
a(t)=\operatorname{res}_{l}\left(t^{*}\right), \quad t^{*}=-t^{-1} \tag{3.2}
\end{equation*}
$$

2) Note that $l-1=f \cdot g, N \mathfrak{p}=p^{f}, g=|G / G(\mathfrak{p})|$.
and for χ the character of $\boldsymbol{F}_{l}^{\times} /\left(\boldsymbol{F}_{l}^{\times}\right)^{g}$ determined by $\chi(w)=e^{\frac{2 \pi i}{g}}$. Then we have $\chi(-1)=\chi\left(w^{\frac{l-1}{2}}\right)=\chi(w)^{\frac{l-1}{2}}=\left(e^{\frac{2 \pi i}{g}}\right)^{\frac{f g}{2}}=(-1)^{f}$; hence, χ is an odd character of $\boldsymbol{F}_{l}^{\times}$if and only if f is odd. Furthermore, we have $\sum_{t \in \boldsymbol{F}_{l}^{\times}}$ $a(t) \bar{\chi}(t)=\sum_{t} \operatorname{res}_{l}\left(t^{*}\right) \bar{\chi}(t)=\sum_{t} \operatorname{res}_{l}(t) \bar{\chi}\left(t^{*}\right)=(-1)^{f} \sum_{t} \operatorname{res}_{l}(t) \chi(t)=$
$(-1)^{f} \sum_{\nu=1}^{l-1} \nu \chi(\nu)$, which is $\neq 0$ if f is odd because $0 \neq L(1, \bar{\chi})=\frac{\pi i}{l^{2}}$ $\tau(\bar{\chi}) \sum_{\nu=1}^{l-1} \nu \chi(\nu)$ for any odd character of $\boldsymbol{F}_{l}{ }^{\times}$.

Let $s=w^{\xi}$ be any element in $H\left(\mathfrak{p}^{\omega}\right)$. Since the above odd character χ satisfies the condition in (3.1), we must have $1=\chi(s)=\chi(w)^{\xi}=e^{\frac{2 \pi i}{g} \xi}$; hence $g \mid \xi$, so $s \bmod \left(\boldsymbol{F}_{l}^{\times}\right)^{g}=1$. In other words, $H\left(p^{\omega}\right)=1$. Now let $J(\mathfrak{p})$ be the Jacobi sum considered in (II), i.e., the one such that $J(\mathfrak{p})=g(\mathfrak{p})^{l}$, $g(\mathfrak{p})$ being the Gauss sum. By the Stickelberger's theorem $J=J(\mathfrak{p})$ is a function of type (S) for the extension k / \boldsymbol{Q} for which $\omega_{J}=\omega=\Sigma_{t} r e s_{l}\left(t^{*}\right) \sigma_{t}$. Since $H\left(\mathfrak{p}^{\omega}\right)=1$, i.e., $G(\mathfrak{p})=G\left(\mathfrak{p}^{\omega}\right)=G^{*}(J(\mathfrak{p}))$, we have, by (1.2),

$$
\boldsymbol{Q}(J(\mathfrak{p}))=\boldsymbol{Q}(\mathfrak{p}) \text { if } f \text { is odd. }{ }^{3)} \text { (Theorem } 2 \text { of (II)). }
$$

Acknowledgements. After this paper has been written, I learned from Mr. Kawamoto that a similar problem has been treated by A. Yokoyama [4] for Jacobi sums of two variables. I express my thanks to Mr. Kawamoto for his information. My thanks go also to Prof. A. Gyoja who took trouble to type my handwritten manuscript.

References

[1] Gyoja, A., and Ono, T.: A note on Jacobi sums. II. Proc. Japan Acad., 69 A, 91-93 (1993).
[2] Weil, A.: Jacobi sums as "Grössencharactere". Trans. Am. Math. Soc., 73 VI, 487-495 (1952).
[3] Kimura, T.: Algebraic class number formulae for cyclotomic fields. Sophia Kokyuroku in Math., 22, Sophia Univ. Tokyo (1985).
[4] Yokoyama, A.: On the Gaussian sum and the Jacobi sum with its applications. Tôhoku Math. J. , (2) 16, 142-153 (1964).

[^0]: ${ }^{1)}$ As for the statement, see the last line of this paper before Acknowledgement.

