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On the Structure of Painlevd Transcendents
with a Large Parameter*)

By Takahiro KAWAI *) and Yoshitsugu TAKEI **)

(Communicated by Kiyosi IT6, M.J.A., Sept. 13, 1993)

0. Introduction. The purpose of this note is to report a novel and in-
triguing result (Theorem 3.2 below) on the structure of Painleve transcen-
dents with a large parameter, which asserts that they can be locally reduced
to a solution of the Painlev6 with a large parameter r/ (cf. Table 1.1 below).
The details shall be published elsewhere.

The Painleve equations with a large parameter to be discussed here
naturally arise as conditions for isomonodromic deformations (in the sense of
Jimbo and Miwa [3]) of certain Schr0dinger equations (with a large parameter
r/) tabulated in 1. We hope the result reported here will turn out to be
effective not only for the better understanding of the Painlev6transcendents
but also for the computation of the monodromic structures of those equations
in terms of WKB solutions (cf. [5], [2]). We sincerely thank Professors T.
Aoki and M. Jimbo for the stimulating discussions on these topics, from
which we have benefited much.

1. List of Painlev equations with a large parameter and associated
Schriidinger equations. In order to fix our notations we list up Painlev
equations with a large parameter (Table 1.1) and the relevant Schr0dinger
equations (Table 1.2). The latter ones can be isomonodromically deformed if
the unknown function cy(] I,..., V/) satisfies the deformation equation

1 8A(x, t, )
(1.1) 8t A(x’ t, ) 8x 2 8x
where Ay is the rational function tabulated in Okamoto [4], 4.4 (without the
subscript ]); for example,

1
(1.2) A 2(x- ) Or I, I/),

,-t x(x 1)
(1.3) AvI= t(t-- 1) x- ,etc.

where / is a solution of the Painlev equation Py tabulated below. Here and
in what follows we use the symbol Py to denote the ]-th Painleve equation
with a large parameter 7 as specified below, although they differ from the
original Painlev equations in that they contain a large parameter. Similarly
the symbol SLy in Table 1.2 below denotes the SchrOdinger equation with a
large parameter. The parameter 7 is introduced into these equations in such

*) Dedicated to Professor Shoshichi Kobayashi on his sixtieth birthday.
*) Research Institute for Mathematical Sciences, Kyoto University.

* *) Department of Mathematics, Faculty of Science, Kyoto University.



No. 7] Painlev6 Transcendents 225

a manner that they are compatible with the ordinary procedure of confluence
of singularities in Painlev6 equations (el. e.g. [4]).

Table 1.1 (PainlevO equations with a large parameter 7).
d22

P" 7(6 + t).
dt
d2, 3PH. (22 + t2 + a).
dt

pxu.d22- 1(d2) 1 d2

dt 2 - t dt

d2
PIv

dt

d2
Pv" dt

2 [__2 t 4Cro]-)-+2r +2t2+ +4cr)2--j.

1 [d2 ld2 (2- 1) (22(2- + 2 1) t t\-/ dt

evi

(2- 1) (2 t)

Definition 1.I. Let F](2, t) denote the coefficient of in P]. We then
denote by F(, t) the monic polynomial in 2 that is obtained by multiplying

Fy by a polynomial of and t.
In Table 1.2 below, we list up only the potential Qy to specify the

Schr6dinger equation SLy, i.e., (-- O/Ox + Qy(x, t, ))y 0. The
symbol Ky used there denotes the Hamiltonian given in [4], 4, that is, Ky is
a t-dependent polynomial of and , with (2, ) obeying the Hamiltonian
system

d2 OK+ dv
(1. 4) dt V 0 dt V 02
This system is known to be equivalent to the Painlev6 equation P]. (Cf. [4]
and references cited there.) In particular,

(1.5) K- /2- 22
/14(1.6) Kzx- /2,- /2 t2/2- or2, etc.

Note, however, that in this article 2 and p are, in addition to the constraint
-I

(1.4), supposed to have the following formal series expansions in

(1.7) 2 =Ao(t) +(t) +2(t) +
-1 -2

(1.8) U=uo(t) +v(t) +u(t) v +....
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Other constants such as c in (1.6) are supposed to be genuine costants, i.e.,
complex numbers. We also note that Po will be seen to vanish (Proposition
2.1 (ii)).

Table 1.2 (Potentials of SL] with a large parameter 7).
-1

QI= 4xa + 2tx + 2K- x-
4QII- x at- tx -l- 2crx + 2Ku-

_+_ 37
4(x- )"- 3r/-

x- ,
4(x- ,)"

3r] -2

4(x- 2)2"
tKv

x(x- 1)

t(t-- 1)K,, V (i- 1), 3-+ x(x-- 1)(x- t) x(x-- 1)(x-) + 4(x--2)2"
2. WKB analysis of SLf and Pf. When a (non-zero) WKB solution ]

of the equation SL obeys the deformation equation (1.1), we observe several
interesting phenomena concerning the structure of SL] itself and the

logarithmic derivative S] of el, i.e., S]--0- log S,_1? + S],o + S,7-
+ "".(In what follows, if there is no fear of confusions, we will sometimes
omit the subscript ] in S].) We summarize them as Proposition 2.1 below.
See [2] for the details.

Proposition 2.1. Suppose that a non-zero WKB solution of SL](]
I,’’’, VI) satisfies (1.1), and let S S] denote its logarithmic derivative.
Then we find the following"
(i) Sf satisfies the following equation"

OS ( 1 OA.(2.1) Ot Ox AS 2 Ox ]

(ii) The top term Po(t) in the expansion (1.8) vanishes identically, while the top
term ,o (t) in (1.7) satisfies the following equation"

(1) ,2 in the definition of Kzv in [4], p. 615 is a misprinting of 2.
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(2.2) F(2o(t), t) O.
(iii) Let Qy,o genote the part of Qy that is homogeneous of degree 0 with respect to

7. Then we find the following"

(2.3) Q],o(X, t)[=o()= Ox Q],o(X, 0 Ix=o(t) O.

(iv) S],(x, t)(j’odd) is holomorphic near (x, t)= (2o(t), t), if t is not
contained in (t C; there exists such that Ff (, t) OFf (, t)/

0}. :

( 1
Remark 2.1. The relation (2.1) entails that : S:dx + A:S: 2

Ox dt: is a closed form. Hence using the WKB solution S of the Riccati

equation with a parameter t, i.e., S + OS/Ox Q, we can construct a

WKB solution of SL satisfying (1.1) by setting exp

Starting from o(t) given in Proposition 2.1(ii), we can construct
(t) recursively by solving algebraic equations so that 7:o(t)-formally satisfies P. This formal series is pre-Borel-summable in the sense
of [11. Such a solution of P is our main concern in this article. Although
we leave the detailed exact WKB analysis of to our subsequent articles,
we introduce the following terminologies in the (exact) WKB analysis just to
facilitate the description of our main result.

Definition 2.1. (i) A turning point for is, by definition, a point t
which satisfies

(2.4) F(2o(t), O 02 (2o(t), t) 0.

Such a point t is said to be simple if

(o(t) t) 0.(2.5)

(ii) A Stokes curve for y is the integral curve of the direction field
Im Fy(2o(t), t)/dt 0 that emanates from a turning point for y.

The relevance of these notions to our current consideration is described
in the following:

Prosition 2.2. (i) For a simple turning point v for , there exists a sim-
ple turning point a(t) of SLy, i.e., a simple zero x a(t) of Qy,o(X, t, o(t)),
that merges with the (double) turning point x 2o(t) at t v.
(ii) In the situation described in (i), we find the following relation"

o(t) 1 t /F: (o(S) s)ds.(2.6)
()

Q,o(X, t, o(t))dx 2

The proof of-(i) is straightforward, while the proof of (ii) makes essential
use of (2.1). Considering the imaginary part of both sides in (2.6), we find
that, if a point t lies in the Stokes curve for y, there then exists a Stokes
curve of SLy that connects two turning points of SLy, i.e., o(t) and a(t).

3. A local transformation between Ry and . In this section we put
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to variables and functions relevant to SLs for the notational convenience,

that is, symbols a?, Y, ,0(D, etc. respectively designate the quantities x, t,
20(t), etc. which appear in SLs. Throughout this section, d denotes a point in
a Stokes curve for ,(t)that emanates from a turning point . Here we
assume d is distinct from f. We denote by (D the simple turning point of

SL that merges with o(D ,at i f, whose existence is guaranteed by Prop-
osition 2.2 (i). Note that such a simple turning point is unique in the case of
SLy, that is, 2o(t). We also denote by the part of the Stokes curve that
begins at (t) and ends at ,o(D the existence of f is guaranteed by Prop-
osition 2.2 (ii).

Theorem 3.1. There exist a neigl4borltood f[ of , a neighborhood J of
and holomorphic functions x( t) ( j 0,1,2, ") on (J x f[ and t (
(j 0,1,2,"" ") on f] so that the following relations may hold"
(i) The function to() satisfies

(3.1) /-- (2o(g) g) dg 7 (2o(S) s) ds
t=to(

and, in particular, dto/d 4= 0 holds on r if is sufficiently small.
(ii) Xo((D) 2/o(to(t)) and Xo(/2o(t)) /2o(to(D).
(iii) 8Xo/82 4= 0 on (]
(iv) Letting x(, , r]) and t([, r2) respectively denote the formal series

x(, D7 -i and ,>o t(D7-, we find the following relation"

(3.2) l(a}, /’, r) (x(a, /’, r2))02 Q,(x(2, , 7), t(, 7), r)

2 7 {x(2, ,
Here {x ;97} denotes the Schwarzian derivative Ox /O: 2 Ox/02

Remark 3.1. The functions x and t actually vanish identically for odd

J"So
Remark 3.2. The roles of SL] and SL are symmetric in the above re-

sult, that is, they can be interchanged.
Theorem 3.2. Using the series x(, , 7) and t(L r]) in Theorem 3.1, we

fin’d the following"

(3.3) /2I(t(f, 7), r) --x(:, , )
The proof of Theorem 3.1 is similar to the proof of Theorem 3.1 in [1],

where the "energy" E plays a role similar to the t-variable here. The proof
of Theorem 3.2 makes full use of (2.1) and Proposition 2.1 (iv).
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