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Singular Variation of Non-linear Eigenvalues. II

By Tatsuzo OSAWA *) and Shin OZAWA* *)

(Communicated by Kiyosi IT6, M. J. A., Sept. 13, 1993)

Let M be a bounded domain in R with smooth boundary OM. Let w be
a fixed point in M. Removing an open ball B(s;w)of radius s with the
center w from M, we get M= M\B(s;w). For p> 1 and s> 0 let
/ (s) denote the positive number defined by

/ (s) inf f 1iTu dx,(1.1)
Xe M

where Xs {u
We consider the asymptotic behaviour of 2(s)as s tends to 0. It is well
known that there exists at least one positive solution u which attains (1.1)s
in case of p (1, 5). We note that the minimizer satisfies A u 2(s)us
in M and u 0 on OM. We put

dx,
x

where X {u H)(M) u [Iz,+(u) 1, u 2 0}.
In this paper we show the following
Theorem 1. Assume that the positive solution of- Au 2 u in M

under the Dirichlet condition on OM is unique. Then, there exists a constant
p*( > 1 such that for any p (1, p* (M) we have
(1.2) 2(s) 2 4nsu(w) + o(s)
as s tends to zero.

Example. M B(r), the ball of radius r, satisfies the assumption of
Theorem 1, as is seen in Gidas-Ni-Nirenberg [1, Theorem 1 and p. 224,
2.9]. See also Dancer [2, Theorem 5].

Theorem i follows from the following Theorems 2 and 3.
Theorem 2 (Ozawa [5]). Fix p (1, 5). Assume that the positive solution

of- A u 2u in M under the Dirichlet condition on OM is unique. Moreover
assume that Ker(A + 2 pu-) (0}, where we denote A by the linear @erator
H( H( uAu L(. Then, (1.2) holds.

Theorem 3. Assume that the positive solution of- Au = 2 u in M
under the Dirichlet condition on OM is unique. Then, there exists p*(M) > 1
such that Ker(A + 2pu-) {0} holds forp (1, p*().
We consider the eigenvalue problem (1.3).
(1.3) Ap u- in M

p 0 in OM.
(P) (P)Let (N respectively) be the first (the second, respectively) eigenvalue

of (1.3). Let p be the first eigenfunction of (1.3) which is normalized as
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uP-lz (P)\2 (P)q dx= 1, (rp)(x) >0, x M.
(P)) < P2 Theorem 3 is a consequence of the followingWe know that 0 < Pl

result.
Proposition 1, If/) > 1 is sufficiently close to one, then

(.4)
And
(1.5)

(P)
limp. p.
P--*I

Here tte is the second eigenvalue of the Laplacian A in M under the Dirichlet
condition on M.

(p) (p)
Theorem 3 follows from the inequality tzl < P < tz.. If p is suffi-

ciently close to 1, the above inequality holds and p is not an eigenvalue.
<)-- . We know thatProof of Proposition 1. We want to show/21

u-xqdxinf 17rp ]dx
o
inf (the same term as above)

> inf ([ qlZdx=
by using

II(P-i)/(P+I) 1u-qo"dx < u ,,+

where [Iq denotes the Lq(M) norm. On the other hand,
-1tVu[ u+

Therefore, we get (1.4).
We can prove (1.5) by using the standard perturbation theory of linear

operators. See Kato [3]. Thus, we get Proposition 1.
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