76. Resonance in the Cauchy Problem of a Parabolic Equation

By Kunio Nishioka
Department of Mathematics, Tokyo Metropolitan University (Communicated by Kiyosi Itô, M. J. A., Oct. 12, 1993)

1. Introduction. Let q be a natural number, and we consider the Cauchy problem of the following strongly parabolic equation of $2 q$-th order:

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\left((-1)^{q-1}+b(t, x)\right) \frac{\partial^{2 q} u}{\partial x^{2 q}} \quad t>0, \quad x \in \mathscr{R}^{1} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
u(0, x)=u_{0}(x), \quad x \in \mathscr{R}^{1} \tag{2}
\end{equation*}
$$

where an initial data u_{0} and a coefficient b satisfy Assumption 1 (this and the other terminology are defined at §2). In [6], it is proved;

Proposition. Let Assumption 1 hold, then there exists a unique wide sense solution u of (1) with (2). In addition there is a constant c_{∞} such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|u(t, \cdot)-c_{\infty}\right\|_{0}=0 \tag{3}
\end{equation*}
$$

Thus in the present note, we announce that c_{∞} can be calculated from b and u_{0}, and its value changes drastically whether u_{0} resonates with b or not.

On c_{∞}, only a few results have been known. If one of the following (a) and (b) hold:
(a) $q=1, b$ is real valued and independent of t, and for a constant $\overline{u_{0}}$,

$$
u_{0}-\overline{u_{0}} \in \mathscr{L}_{1}\left(\mathscr{R}^{1}\right),
$$

(b) b is independent of x and there is a constant $\overline{u_{0}}$ such that

$$
\overline{u_{0}}=\lim _{L \rightarrow+\infty} \frac{1}{L} \int_{0}^{L} u_{0}(x) d x=\lim _{L \rightarrow+\infty} \frac{1}{L} \int_{-L 0}^{0} u_{0}(x) d x
$$

then it is known in [3, 4, etc.] and [1] that
(4)

$$
c_{\infty}=\overline{u_{0}} .
$$

But (4) does not make clear delicate relation between c_{∞} and b, because the both conditions above prevent that u_{0} resonates with b. In this sense, (4) is very different from our result.

Our method to calculate c_{∞} is based on an extended Girsanov type formula. The usual Girsanov formula is well known in the theory of probability. It works when first order terms are added to a second order parabolic equation. Besides it, we introduced the extended Girsanov type formula in [5], which works when same order terms are added to a $2 q$-th order parabolic equation. By this formula, the wide sense solution u of (1) with (2) is represented in a series, which enables us to calculate c_{∞}.
2. Notations. Let $\lambda \geq 0$, and let $\mathcal{M}^{\lambda}\left(\mathscr{R}^{1}\right)$ be a set of all complex valued measures $\mu(d \xi)$ such that

$$
\|\mu\|_{\lambda} \equiv \int_{\mathscr{R}^{1}}(1+|\xi|)^{\lambda}|\mu|(d \xi)<\infty
$$

where $|\mu|$ denotes total variation of μ. As well known, $\mathcal{M}^{\lambda}\left(\mathscr{R}^{1}\right)$ is a Banach
algebra under convolution $*$ and norm $\|\mu\|_{\lambda}$.
We denote by $\mathscr{F}^{\lambda}\left(\mathscr{R}^{1}\right)$ a Banach space of all Fourier transforms of $\mathscr{M}^{\lambda}\left(\mathscr{R}^{1}\right)$ i.e. $f \in \mathscr{F}^{\lambda}\left(\mathscr{R}^{1}\right)$ is written as (5) for a $\mu_{f} \in \mathcal{M}^{\lambda}\left(\mathscr{R}^{1}\right)$, and we define $\|f\|_{\lambda} \equiv\left\|\mu_{f}\right\|_{\lambda}$. Note that $\mathscr{F}^{0}\left(\mathscr{R}^{1}\right)$ contains the Schwartz class, constants, etc.

Put $\mathscr{R}^{+}=[0, \infty)$ and let $\mathcal{M}^{0}\left(\mathscr{R}^{+}, \mathscr{R}^{1}\right)$ be a set of all complex valued measures $\eta(t, d \xi), t \in \mathscr{R}^{+}$such that
(a) $\eta(t, \xi) \in \mathcal{M}^{0}\left(\mathscr{R}^{1}\right)$ for each $t \in \mathscr{R}^{+}$
(b) $\|\eta(t, \cdot)-\eta(s, \cdot)\|_{0} \rightarrow 0 \quad$ as $t \rightarrow s$ on \mathscr{R}^{+}.

As before, $\mathscr{F}^{0}\left(\mathscr{R}^{+}, \mathscr{R}^{1}\right)$ denotes a set of all Fourier transforms of $\mathscr{M}^{0}\left(\mathscr{R}^{+}, \mathscr{R}^{1}\right)$, that is functions which are written as (6) for an $\eta \in \mathcal{M}^{0}\left(\mathscr{R}^{+}, \mathscr{R}^{1}\right)$.

Throughout the note, we suppose:
Assumption 1. (a) $u_{0} \in \mathscr{F}^{0}\left(\mathscr{R}^{1}\right)$, that is

$$
\begin{equation*}
u_{0}(x)=\int \exp \{i \xi x\} \mu_{0}(d \xi) \text { for a } \mu_{0} \in \mathcal{M}^{0}\left(\mathscr{R}^{1}\right) \tag{5}
\end{equation*}
$$

(b) $b \in \mathscr{F}^{0}\left(\mathscr{R}^{+}, \mathscr{R}^{1}\right)$, that is

$$
\begin{equation*}
b(t, x)=\int \exp \{i \xi x\} \eta_{b}(t, d \xi) \text { for an } \eta_{b} \in \mathcal{M}^{0}\left(\mathscr{R}^{+}, \mathscr{R}^{1}\right) \tag{6}
\end{equation*}
$$

(c) In (6), η_{b} has a structure

$$
\begin{equation*}
\eta_{b}(t, d \xi)=h_{b}(t, \xi) \nu_{b}(d \xi), \tag{7}
\end{equation*}
$$

where a continuous function $h_{b}(t, x)$ and $\nu_{b}(d \xi) \in \mathcal{M}^{0}\left(\mathscr{R}^{1}\right)$ satisfy

$$
\begin{equation*}
1 \geq \sup _{(t, \xi) \in \mathscr{R}^{+} \times \mathscr{R}^{1}}\left|h_{b}\right| \quad \text { and } \quad 1>\left\|\nu_{b}\right\|_{0} . \tag{8}
\end{equation*}
$$

Next we specify a solution of the Cauchy problem of (1).
Definition 2. A function $v(t, x) \in \mathscr{F}^{0}\left(\mathscr{R}^{+}, \mathscr{R}^{1}\right)$ is called a wide sense solution of (1) with (2), if there exists a sequence

$$
\left\{\left(v^{(m)}(t, x), u_{0}^{(m)}(x)\right) ; m \geq 1\right\} \subset \mathscr{F}^{0}\left(\mathscr{R}^{+}, \mathscr{R}^{1}\right) \times \mathscr{F}^{2 q}\left(\mathscr{R}^{1}\right)
$$

such that;
(a) $\lim _{m \rightarrow \infty}\left\|u_{0}^{(m)}-u_{0}\right\|_{0}=0$ and

$$
\lim _{m \rightarrow \infty} \sup _{0<t<T}\left\|v^{(m)}(t, \cdot)-v(t, \cdot)\right\|_{0}=0 \text { for any } T>0
$$

(b) For each $\partial^{2 q} v^{(m)} / \partial x^{2 q}, \partial v^{(m)} / \partial t \in \mathscr{F}^{0}\left(\mathscr{R}^{+}, \mathscr{R}^{1}\right)$, and $v^{(m)}$ is a classical solution of (1) with an initial condition $u(0, x)=u_{0}^{(m)}(x)$ instead of (2).
3. A combination of resonance. For the measures in (5) and (7), we define

$$
\begin{align*}
& K\left(u_{0}\right) \equiv\left\{y \in \mathscr{R}^{1} ;\left|\mu_{0}\right|(\{y\})>0\right\}-\{0\} \tag{9}\\
& K(b) \equiv\left\{z \in \mathscr{R}^{1} ;\left|\nu_{b}\right|(\{z\})>0\right\}-\{0\} . \tag{10}
\end{align*}
$$

Note that $K\left(u_{0}\right)$ and $K(b)$ are both countable sets at most, by Assumption 1.
Definition 3. Take natural numbers $m_{k}, k=1, \ldots, l$, a point $y \in$ $K\left(u_{0}\right)$, and points $z_{k}^{\prime} s \in K(b), k=1, \ldots, l$, such as $z_{1}<z_{2}<\cdots<z_{l}$. If it holds that

$$
y+m_{1} z_{1}+m_{2} z_{2}+\cdots+m_{l} z_{l}=0
$$

then an ordered set

$$
\tilde{\gamma} \equiv(y ; \underbrace{z_{1}, \ldots, z_{1},}_{m_{1}} \underbrace{z_{2}, \ldots, z_{2}}_{m_{2}}, \ldots, \underbrace{z_{l}, \ldots, z_{l}}_{m_{l}})
$$

is called a combination of resonance. We denote by Γ a whole of all combinations of resonance, and say that u_{0} resonates with b if $\Gamma \neq 0$.

Theorem 4. Let Assumption 1 hold. If u_{0} does not resonate with b, i.e. $\Gamma=\emptyset$, then

$$
c_{\infty}=\mu_{0}(\{0\}) .
$$

Remark 5. (a) If $K\left(u_{0}\right)=\emptyset$, then u_{0} does not resonate with any b. For $K\left(u_{0}\right)=\emptyset$, it is sufficient that

$$
u_{0}(x)=\int \exp \{i \zeta x\} \widehat{u_{0}}(\zeta) d \zeta \text { for a } \widehat{u_{0}}(\zeta) \in \mathscr{L}_{1}\left(\mathscr{R}^{1}\right) .
$$

(b) If $K(b)=\emptyset$, then any u_{0} is not resonate with b. It is sufficient for $K(b)=\emptyset$ that

$$
b(t, x)=\int \exp \{i \xi x\} h_{b}(t, \xi) \hat{b}(\xi) d \xi \text { for a } \hat{b}(\xi) \in \mathscr{L}_{1}\left(\mathscr{R}^{1}\right)
$$

Example 1. For a natural number n, consider

$$
\begin{aligned}
\frac{\partial u}{\partial t}=\left((-1)^{q-1}+\frac{1}{2} \sin x\right) \frac{\partial^{2 q} u}{\partial x^{2 q}}, & t>0, x \in \mathscr{R}^{1}, \\
u(0, x) & =u_{0}(x) \equiv \sin \left(1+\frac{1}{n+1}\right) x, \quad x \in \mathscr{R}^{1} .
\end{aligned}
$$

Here $K\left(u_{0}\right)=\left\{1+\frac{1}{n+1},-1-\frac{1}{n+1}\right\}$, and $K(b)=\{1,-1\}$. So u_{0} does not resonate with b, and $c_{\infty}=0$ even if n is very large. Compare this with Example 2 in §4.
§4. Resonance. Consider an ordered set $\mathscr{C} \equiv\left(x_{0} ; x_{1}, x_{2}, \cdots \cdot, x_{j}\right)$ consisting of points in \mathscr{R}^{1}. For \mathscr{C}, we define a number $Q(\mathscr{C})$ as follows:

Definition 6. Case 1. If one of the following numbers

$$
\begin{equation*}
x_{0}, x_{0}+x_{1}, x_{0}+x_{1}+x_{2}, \ldots, x_{0}+x_{1}+\cdots+x_{j-1} \tag{11}
\end{equation*}
$$

is zero, then we define $Q(\mathscr{C})=0$.
Case 2. If none of (11) is zero, then we define
$Q(\mathscr{C})=\mu_{0}\left(\left\{x_{0}\right\}\right) \nu_{b}\left(\left\{x_{1}\right\}\right) \cdots \nu_{b}\left(\left\{x_{j}\right\}\right) \times$

$$
\times \lim _{T \rightarrow \infty} \frac{1}{T} \int \cdots \int_{0<s_{1}<\cdots<s_{j}<t<T} d s_{1} \cdots d s_{j} d t h_{b}\left(s_{1}, x_{1}\right) \cdots h_{b}\left(s_{j}, x_{j}\right)
$$

$\times\left(i x_{0}\right)^{2 q} \exp \left\{-x_{0}^{2 q} s_{1}\right\}$
$\times\left(i\left(x_{0}+x_{1}\right)\right)^{2 q} \exp \left\{-\left(x_{0}+x_{1}\right)^{2 q}\left(s_{2}-s_{1}\right)\right\}$
$\times \cdots \times\left(i\left(x_{0}+\cdots+x_{j-1}\right)\right)^{2 q} \exp \left\{-\left(x_{0}+\cdots+x_{j-1}\right)^{2 q}\left(s_{j}-s_{j-1}\right\}\right\}$.
Remark 7. (a) $Q(\mathscr{C})$ exists for any \mathscr{C}, by Assumption 1.
(b) If the coefficient b does not depend on t, that is $h_{b} \equiv 1$, then the above integrations can be carried out, and we get

$$
Q(\mathscr{C})=(-1)^{q j} \mu_{0}\left(\left\{x_{0}\right\}\right) \nu_{b}\left(\left\{x_{1}\right\}\right) \cdots \nu_{b}\left(\left\{x_{j}\right\}\right) .
$$

Now we are in a position to state our remained assertion.
Theorem 8. Let Assumption 1 hold. If u_{0} resonates with b, then

$$
\begin{equation*}
c_{\infty}=\mu_{0}(\{0\})+\sum_{\tilde{r} \in \Gamma} \tilde{\Sigma}_{\tilde{r}} Q(\tilde{r}), \tag{12}
\end{equation*}
$$

where $\tilde{\Sigma}_{\tilde{\gamma}}$ denotes to take summation over all permutations of a combination of resonance $\tilde{\gamma}$ except its first element y, that is all permutations of

$$
\underbrace{\left(z_{1}, \ldots, z_{1}\right.}_{m_{1}}, \underbrace{z_{2}, \ldots, z_{2}, \ldots, z_{l}, \ldots, z_{l}}_{m_{2}}) .
$$

Remark 9. (a) The right-hand side of (12) always converges by Assumption 1.
(b) Compare the following Examples 2 and 3 with Example 1 in §3, and we see that c_{∞} is very sensible with respect to a little change of u_{0}.
(c) All argument in the note can be extended to multidimensional cases.

Example 2. We consider

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}=\left((-1)^{q-1}+\frac{1}{2} \sin x\right) \frac{\partial^{2 q} u}{\partial x^{2 q}}, & t>0, \quad x \in \mathscr{R}^{1}, \\
u(0, x)=u_{0}(x) \equiv \sin x, & x \in \mathscr{R}^{1} . \tag{14}
\end{array}
$$

Now $K\left(u_{0}\right)=\{1,-1\}=K(b)$, and there are infinite combinations of resonance's. So following to Definition 6 and Theorem 8, we get

$$
\left|c_{\infty}-(-1)^{q} \times 0.2675 \cdots\right| \leq 0.014 \cdots
$$

Here it should be noted that if $q=1$, we happen to calculate c_{∞} for (13) and (14) by the well known ergodic property of a diffusion process on a circle. So we get

$$
c_{\infty}=\sqrt{3}-2=-0.2679 \cdots
$$

Example 3. Again we treat (13) with

$$
u(0, x)=u_{0}(x) \equiv \cos x, \quad x \in \mathscr{R}^{1}
$$

instead of (14). $K\left(u_{0}\right)$ and $K(b)$ are same as in Example 2, and u_{0} resonates with b, but (12) derives that

$$
c_{\infty}=0 .
$$

Example 4. Let us treat a second order equation of a time depending coefficient:

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}=\left(1+\frac{1}{2} \sin t \sin x\right) \frac{\partial^{2} u}{\partial x^{2}}, & t>0, \quad x \in \mathscr{R}^{1} \\
u(0, x)=u_{0}(x) \equiv \sin x, & x \in \mathscr{R}^{1} .
\end{array}
$$

$K\left(u_{0}\right)$ and $K(b)$ are same as in Example 2, and we get

$$
\left|c_{\infty}+0.1178 \cdots\right| \leq 0.0104 \cdots
$$

References

[1] Eidel'man, E. D.: Parabolic Systems. North-Holland, Amsterdam (1969).
[2] Eskin, L. D.: On the asymptotic behavior of solutions of parabolic equations as $t \rightarrow$ ∞. Izv. Vyss. Ucebn. Zaved Matematika, 54, 154-164 (1966); Amer. Math. Soc. Transl., 87, 89-98 (1970).
[3] Has'minski, R. Z. : Stochastic Stability of Differential Equations. Sijthoff and Noordhoff, Alphen aan den Rijn (1980).
[4] Il'in, A. M., and Has'minski, R. Z.: Asymptotic behavior of solutions of parabolic equations and an ergodic property of nonhomogeneous diffusion processes. Mat. Sb., 60, 366-392 (1963); Amer. Math. Soc. Transl., 49, 241-268 (1965).
[5] Nishioka, K.: A stochastic solution of a high order parabolic equation. J. Math. Soc. Japan, 39, 209-231 (1987).
[6] - : Large time behavior of a solution of a parabolic equation. Proc. Japan Acad., 62A, 371-374 (1986).

