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Resonance in the Cauchy Problem
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Department of Mathematics, Tokyo Metropolitan University

(Communicated by Kiyosi IT6, M. J. A., Oct. 12, 1993)

1. Introduction. Let q be a natural number, and we consider the
Cauchy problem of the following strongly parabolic equation of 2q-th order"

#u #u
((-- 1)q-1

__
b(t, x)) t > 0, x ,(1) at 8x2q

(2) u(0, x) Uo(X), x ,
where an initial data uo and a coefficient b satisfy Assumption 1 (this and
the other terminology are defined at 2). In [6], it is proved’

Proposition. Let Assumption 1 hold, then there exists a unique wide sense
solution u of (1) with (2). In addition there is a constant c such that

(3) liE u (t,’) c Iio 0.

Thus in the present note, we announce that c can be calculated from b
and uo, and its value changes drastically whether u resonates with b or not.

On c, only a few results have been known. If one of the following (a)
and (b) hold"

(a) q 1, b is real valued and independent of t, and for a constant u-,
Uo u- .(),

(b) b is independent of x and there is a constant oo such that

Uo= lim Uo (X) dx lim - Uo (X) dx
L--.+oo L--,+oo L0

then it is known in [3, 4, etc.] and[l] that
(4) c-
But (4) does not make clear delicate relation between coo and b, because the
both conditions above prevent that u resonates with b. In this sense, (4) is
very different from our result.

Our method to calculate coo is based on an extended Girsanov type for-
mula. The usual Girsanov formula is well known in the theory of probability.
It works when first order terms are added to a second order parabolic equa-
tion. Besides it, we introduced the extended Girsanov type formula in [5],
which works when same order terms are added to a 2q-th order parabolic
equation. By this formula, the wide sense solution u of (1) with (2) is repre-
sented in a series, which enables us to calculate coo.

2. Notations. Let 2 --> 0, and let 3//() be a set of all complex valued
measures/2(d) such that

where I/ldenotes total variation of/. As well known, ///() is a Banach
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algebra under convolution * and norm II .
We denote by (1)a Banach space of all Fourier transforms of

(1) i.e. f ,(/1) is written as (5) for a /y (1), and we define

f l pz I. Note that o() contains the Schwartz class, constants, etc.
Put += [0, )and let o(+, )be a set of all complex valued

measures (t, d), t + such that
(a) (t, ) o() for each t +
(b) l(t,’) (s ") IIo 0 as tson

As before, o(N+ ) denotes a set of all Fourier transforms of o(+ N)
that is functions which are written as (6) for an o(N+ )

Throughout the note, we suppose"

Assumption 1. (a) o o(N), that is

(5) o(Z) f exp{ix} go(d) for a o o(N1).

(b) b o(+, ) that is

(6) b(t, x) f exp{ix) (t, d) for an o(+

(c) In (6), has a structure
(7) (t, ) h (t, ) (d)
where a continnons fnnction h (t, x) and (d) o() satisfy
(8) 1 sup h and 1 >

(t,)N+xN
Next we specify a solution of the Cauchy problem of (1).
Definition 2. A function v(t, z) o(N+ )is called a Wide sense

solution of (1) with (2), if there exists a sequence
(m) (m){(v (t,x),,o (x));m21) c(+,) x’()

such that’
(a) limllo o1o= 0 and

lim SUPo<t<r IIv (t,.) v(t,.)llo o for any T > 0.
(m)(b) For each Ov()/Oz Ov( o(+ N) and v s a classic-

(m)
al solution of (1) with an initial condition (0, x) o (x) instead of (2).

3. A embnatn f resonance. For the measures in (5) and (7), we de-
fine

(9) K("o) (e ;o1(()) > 0)

Note that K(o) and K(b) are both countable sets at most, by Assumption 1.
Definition 3. Take natural numbers m, k= 1,... ,l, a point y

K(o), and points z’s K(b), k 1,...,l, such as z < z < < z. If it
holds that

y+ mz +mz+ +mz =0,
then an ordered set

f (y; z,...,z, z,...,z,...,z,...,z)

is called a combination of resonance. We denote by F a whole of all combina-
tions of resonance, and say that o resonates with b if F 0.
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Theorem 4. Let Assumption 1 hold. If uo does not resonate with b, i.e.
F-- O, then

c o((0}).
Remark 5. (a) If K(uo) 0, then Uo does not resonate with any b. For

K(uo) 0, it is sufficient that

Uo(X) f exp(ix} u’() d for a u’() ().
(b) If K(b)- 0, then any uo is not resonate with b. It is sufficient for
K(b)- 0 that

b(t, x) f exp{ix} hb(t, )/() d for a/() 1(1).
Example 1. For a natural number n, consider

gu_( 1 )o2ut (-- 1)*- +-sinx x2,,

u(O, x) Uo(X) =-- sin (1 +
t> 0, x ,

Here K(uo) [1 + n+l’ --1--
1 }n+ 1 and K(b) {1, 1}. So uo

does not resonate with b, and Coo---- 0 even if n is very large. Compare this
with Example 2 in 4.

4. Resonance. Consider an ordered set (x0; x,x2, ,xj)
consisting of points in . For , we define a number Q() as follows:

Definition 6. Case 1. If one of the following numbers
(1 1) X0, X0-- Xl, X0 -- X -- X2,... X 2t- X f- -- Xj_
is zero, then we define Q() 0.

Case 2. If none of (11) is zero, then we define
Q() =/20 ({Xo}) vb ((x})"" v ({xj})

l/x lim - ds" ds dt h (s, x)"" h (s, z)
T--oo Sl< .<si<t< T

(iXo) exp{-- Xo
2 s}

(i(Xo+ xl)) 2 exp{-- (Xo + x) (s2 s)}
(i(Xo + + X_l))q exp{ (x + + x_) 2q (s- s_l}}.

Remark 7. (a) Q() exists for any , by Assumption 1.
(b) If the coefficient b does not depend on t, that is h-- 1, then the

above integrations can be carried out, and we get
Q() (_ 1)qJ/2o({Xo}) Vb({X}) Pb({X/}).

NOW we are in a position to state our remained assertion.
Theorem 8. Let Assumption i hold. If u resonates with b, then

(12) c-/o({0}) +

_
Q(),

where _, denotes to take summation over all permutations of a combination of
resonance except its first element , that is all permutations of

(Zl Zl Z2... Z2... Zl Zl).
m m m

1)n+ 1 x, X 1o
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Remark 9. (a) The right-hand side of (12) always converges by
Assumption 1.

(b) Compare the following Examples 2 and 3 with Example 1 in {}3, and
we see that coo is very sensible with respect to a little change of u0.

(c) All argument in the note can be extended to multidimensional cases.
Example 2. We consider

u_( 1
(13) t (- 1)-+-sinx t>0, xt,

X2q

(14) u(0, x) Uo(X) =- sin x, x .
Now K(uo) (1, 1) K(b), and thee e infinite combinations
nance’s. So following to Definition 6 and Theorem 8, we get

c- (-- 1) q x 0.2675 g 0.014....
Here it should be noted that if q 1, we happen to calculate c fo (13) nd
(14) by the well known egodic property of a diffusion pocess on a circle.
So we get

c - 2 --0.2679....
Example 3. Again we teat (13) with

u(0, x)-uo(x) cosx, x
instead of (14)., K(uo) and K(b) are same as in Example 2, and uo resonates
with b, but (12) derives that

Example 4. Let us treat a second order equation of a time depending
coefficient:

u_( 1 )aut 1 + sin tsinx t > 0, x
X

u (0, x) Uo(X) sin x, x .
K(uo) and K(b) are same as in Example 2, and we get

+ O. lr8... g 0.0 04 ....

[41

[5]
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