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Abstract: We consider the eigenvalue problem of an order-preserving

mapping defined on a positive cone of an ordered Banach space. Among
other things, we prove the existence and, in some cases, the uniqueness of

the positive eigenvalue. We also discuss other properties of eigenvalues and

eigenvectors. The notion of indecomposability for nonlinear mappings that

we introduce in an infinite dimensional setting will play a key role in our

argument. We apply the results in this paper to boundary value problems

for a class of partial differential equations in part II.
Key words Perron-Frobenius order-preserving; indecomposable
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1. Introduction. The Perron-Frobenius theorem, which is concerned
with the properties of eigenvalues and eigenvectors of square matrices whose
components are nonnegative, has been extended and applied in various ways.
It has been generalized to positive linear operators on a Banach space in [1],
[3], [6], [12]. From the point of view of applications to mathematical eco-
nomics, extensions of the theory to nonlinear mappings have also been
obtained in [4], [5], [9], [10], [11]. They are, however, concerned only with
problems in a finite dimensional Euclidean space.

In this paper, we extend these results to nonlinear mappings on an infi-
nite dimensional space. In doing so, we introduce the notion of indecomposa-
bility for a nonlinear mapping on an infinite dimensional space. This notion
is an infinite dimensional extension of that for a mapping on an n-dimensional
Euclidean space defined in [4 Appendix], and is also a nonlinear extension
of that for a linear operator found in [2]. We then consider the eigenvalue
problem of an order-preserving mapping T defined on a positive cone E+ of
an ordered Banach space E. We define the operator norm of a positively
homogeneous mapping T and denote lirnn_oo Tn

by as in the case
of linear operator. The quantity r(T) plays an important role in establishing
the existence of positive eigenvalues. This places our problem in marked con-
trast with the case of finite dimensional spaces, in which the estimation of
r(T) is of little importance since the existence of positive eigenvalues is
obtained by rather a straightforward application of Brower fixed-point
theorem.

As the space is limited, we omit the proof of our theorems. See the forth-
coming paper [7] for details.
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2. Notations and assumptions. Let E be an ordered Banach space, that
is, a real Banach space provided with an order cone E+ (a closed convex cone
with vertex at 0 such that E+ [ (--E+) {0}). We assume that the in-
terior of E+, denoted by (E+) i, is nonempty. Such a space is called a strongly
ordered Banach space. We also assume that dime _> 2.

For x yE we write x>>y ifx--y (E+) x > y if x-- y E+\{0},
and x -> y if x- y E+. For x E we say that x is strongly positive, posi-
tive, nonnegative if and only if x >> 0, x > 0, x _> 0, respectively.

We assume that the norm on E is monotone, namely,
(2.1) 0 --< x --< y implies x --< Y II.

For x --> 0, we denote

Ex {y -> 0ly -< Rx for some/ > 0}.
Note that Ex {0} if and only if x 0, and Ex E+ if and only if x >> 0.

Let T be a mapping from E+ into itself. We will impose on T the follow-
ing conditions"
Al(compactness)" T is continuous and the image of a bounded set by T is re-

latively compact,
A2(positive homogeneity)" T(,x) =/ Tx for any/ > 0, x _> 0,
A2’(subhomogeneity)" T(x) <- , Tx for any , > 1, x -> 0,
A3(order-preserving property)" x <-- y implies Tx <_ Ty,
A4(indecomposability) {0} Ex_ E+ implies Tx- Ty = Ex_.

It is often useful to express the indecomposability condition in the fol-
lowing form"

Lemma 1. Assume A4 and let x >-- y. Then there exists a constant , > 0
such that

Tx-- Ty <_ (x-- y)
if and only if either x y or x y.

We define
VP(T) (,1 is an eigenvalue of T}

{1 Tx ,x for some x > O}
and denote the set of eigenvectors corresponding to 2 by W. We then set

W= W.
VP( T)

For each p > 0 we denote S, {x _> o lll x II- } and
sup VP(T [s) if VP(T Is) =/= 0,

I,(T) c if VP(TIsp) 0,
where T Isp means the restriction of T on S,. We also set

W(p) W(r) S.
This defines a multivalued mapping W’(0, c)--, 2/. It is clear that

(T) is independent of p if T is positively homogeneous. Finally we set
T II- sup<[I Tx Ilix > 0 and x II- 1}.

Lemma 2. Under the assumptions A2 and A3, [IT < + oo. Fur-
thermore, lim_.oo T /

exists and satisfies lim_.oo T / <- T I[.
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Denote
(2.2) r(T) lim T

3. Main results. First we show the properties of the maximal eigen-
value of positively homogeneous mapping T and study the relation between
the maximal eigenvalue and r(T).

Theorem 3. Suppose that T :E+-- E+ satisfies the assumptions A1, A2,
A3 and that r( T) > O. Then r( T) is the maximal eigenvalue of T.

Theorem 4. Let T satisfy the assumptions A1, A2, A3, and A4. Then
r(T) O, and is the only eigenvalue of T. The corresponding eigenvector is

strongly positive and unique up to multiplication by a positive constant.
Next, we assume that the mapping T:E+--, E+ satisfies the condition

A2’ (subhomogeneity), which is a relaxed version of A2.
Theorem 5. Let T satisfy the assumptions A1, A2’, A3, and have a posi-

tive eigenvalue. Then
(T) > O, and is an eigenvalue of T for each p > O,

(ii) /, (T) is continuous and nonincreasing with respect to p > O,
(iii) W(p) is nonempty and compact for each p > O,
(iv) the correspondence p - W(p) is upper semicontinuous in the sense of a

multivalued mapping.
Theorem 6. Let T satisfy the assumptions A1, A2’, A3 and A4. Then T

has an eigenvalue and
VP( T) { T) p > O) O, W >0 W(p)

Further the following properties hold:
W(R) is a singleton for each p > O,

(ii) 0 << W(p) << W(p’) when 0 p < p’,
(iii) p W(p) is a continuous mapping from (0, oo) to E+.
Finally, we study the generalized eigenvalue problem:

(3.1) Tu u,
where {T}> is a family of mappings with positive real parameter ,> 0.

Theorem 7. Let each T E+--* E+ satisfies A1, A2’, A3 and A4, that
(3.2) T(/x) </Tx (/ > 1, x >> 0),
and that there exists a positive solution u > 0 of (3.1) for some > O. Then
there exists a continuous mapping u(,) from some interval A into E+ such that

((, u) lTu u and u > 0} ((,, u()) ], A}.
The above set is unbounded in (0, oo) E+. Furthermore, u() <--u(’)for
any 0 < < ’----hence, in particular, u() is nondecreasing in
and, if, inf A > 0,

o as ’ /,.
Remark 8. If the inequality in A2’ in Theorem 6 holds strictly, that is,

T(x) < Tx
for any / > 1 and x >> 0, then (T) is strictly decreasing with respect to
p>0.

Remark 9. The assumption A4 in Theorems 4, 6 and 7 can be relaxed
somewhat. To be more precise, instead of assuming that T satisfies A4,
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assume simply that W :/: 0 and that T [wu(0 satisfies A4, that is,
A4’ for x, y W U {0}, {0} GEx_ EE+ implies Tx Ty Ex_.

Then the same statements as those of Theorems 4, 6 or 7 hold, respectively.
4 Eigenvalue problem for the case where the positive cone has empty in-

terior. In this section we deal with the case where the ordered Banach
space E is not necessarily a strongly ordered one; in other words, E+ may

have empty interior.
We assume that

(4.1) 0 <-- x <_ y implies IIx <--II Y
and that there exists some strongly ordered Banach space V(dim V_> 2),
embedded continuously into E, with a positive cone V+ E+ 1 V such that

TE+ V+. We do not assume that 0 --< x <_ y implies x ]]v -< y Ilv for x, y
V, where 1[" ]Iv denotes the norm on V. For a:, y E, we write a: >> y if

and only if a, y V and a:- y (V+) i. We say x E is strongly positive
ifzc >> 0.

We replace some of the assumptions given in Section 2 by the following:

Bl(compactness) T (E+, I[" ]])-- (V+, ][" [Iv) is a compact mapping,
B4(indecomposability): for a:, y V,

{0} g Ex- VI V g V+ implies T3c- Ty Ex_.
Lemma 10. Suppose that T satisfies the assumptions B1, A2, A3. Then

I]T ( + oo. Furthermore limn_.oo Tn ]]l/n exists and lim_
Thus r(T) lim_oo T ][" is well defined.

Replacing the assumption A1 by B1 and A4 by B4, we can prove the
same statements as those of Theorems 3-7 and Remarks 8, 9.
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