No. 8] Proc. Japan Acad., 69, Ser. A (1993) 283

64. On the Asymptotic Formula for the Number of Representations
of Numbers as the Sum of a Prime and a k-th Power
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(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1993)

§1. For an integer k = 2, let E,(X) be the number of natural numbers
n < X such that # is not representable as the sum of a prime and a k-th
power. In 1937, Davenport and Heilbronn [3] proved that E,(X) =
O(X(log X)~) with a positive constant ¢, depending only on k, in other
words, almost all natural numbers are representable as the sum of a prime
and a k-th power. After their result, some articles established sharper
bounds for E,(X), and, at present, the best result is E,(X) = O(X'™’*) with
a positive constant 0, depending only on k, which was proved by A. L
Vinogradov [9] and Briuinner, Perelli, and Pintz [1] for £ = 2, and by Plaksin
[7] and Zaccagnini [10] for £k = 3. On the difference of the situations between
the cases k = 2 and k = 3, we relate in §4 briefly.

On the other hand, let Rk(n) be the number of representations of # as
the sum of a prime and a k-th power, p,(d) = p, ,(d) be the number of solu-
tions m of the congruence m* — n = 0(mod d) with 1 < m < d, and let I,
be the set of all natural numbers # such that the polynomial z¥ = nis ir-
reducible in Qlx], where @ is the rational number field. As for the asympto-
tic behavior of R,(n), it is conjectured that

R, ~ ©,(n) 10,

as # tends to the infinity, providing » € I, where
0, — 1
6, =1 (1- 22222
‘ , » p—1
and hereafter the letter p stands for prime numbers. For k = 2, this was
conjectured by Hardy and Littlewood [4, Conjecture H], and Miech [6] proved

that
R,(n) = &,(n) %;"—n (1 + 0<m—1golg'0%ﬂ))

for all but O(X(og X)™) natural numbers # < X with any fixed A > 0.
For each k = 3, we can also establish an asymptotic formula for R,(n) valid
for almost all #:

Theorem. For a fixed integer k Zk 3, and for any fixed A > 0, we have
(1) R, = 6,00 o (14 o(%"%-”—))
for n < X with at most O(X1og X)™) exceptions.

Because of the possible existence of the Siegel zeros, Miech’s result and
our result seem the best possible for the present. The proof of our Theorem
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is described in [5] in detail.

§2. Our proof is in the frame work of the circle method of Hardy and
Littlewood, as in the articles cited in the preceding section. The most impor-
tant part of our argument is the treatment of the sum ®&,(n, @), introduced
below, which is the singular series in our problem. In the articles [3], [7] and
[10], the singular series ®,(n, @) is approximated, for almost all #, by a
finite product of the form II,,(1 — (o,(») — 1) /(p — 1)) with a suitable
parameter P. In contrast with this, we shall approximate ®&,(»#, @) by an in-
finite product &, () for almost all .

Let A > 0 be any fixed constant, B be a suitable constant depending
only on A and k, and let @, = (log X)®. We put

(g
(Sk(n, Q) qZQ (0((]) H( (P) )
where ¢ and ¢ denote the Mobius functlon and Euler’s totient function,
respectively. By standard application of the circle method, we have

: _ n loglogn -
(2) Ri(m) = 8,(n, Q) logn (1 + O( log n >> + R,
with 3 )
(3) > IR, P« X E(og X) ™.
n<X
Making use of (8) in Lemma 2, below, we obtain easily
(4) E | ®, (n, VvX) — ©k(nr Q1) ]2 < X(log AX)_M*
n<X

In view of (2), (3) and (4), we have
w)Rmn=@mN7Mgn@+o@%3¥»+ommwxr&

for n < X with at most O(X(og X)) exceptions.
§3. In order to investigate &, (n, vX), we define the function

Z,(s) = I;I (1 - %_S_j))l—-)_ﬁql:),

where s = ¢ + ¢t is a complex variable, as usual. We write b =1 +
(log X)™" and T, = exp(/log X)/2, and apply Perron’s formula (see [2, p.
105 Lemma], for example) Ths&:ve have\/r_%ust_iglely for n f XX)"
_ ° log
6)  ®,n VX = 27rz Gk — ds+ 0 ( - ).
So we need some information about Z,(s) near the line 0 = 1.
On the other hand, let {(s) and {,(s) be the Riemann zeta function and
the Dedekind zeta function of the field Q(1""), respectively, and let N(n; o, T)
be the number of zeros of &,(s) /{(s) in region 0 = a and | t| < T. Here we
note that {,(s) /{(s) is an entire function (see [8]).
The Euler product for {,(s) is written as
L) =0 O 1 —p /)™=

b 1<F<k
with the number a,(f, p) of prime ideals p in Q(n"") such that the norm of
pis p’. In particular, we see

a,(1, p) = 0,(p)
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providing # € I, and p X kn. By observing the Euler product for {(s)/
£,(s), we have

_ £ -
Z,(s) = m £, () E,(s),

where

- Sy o) +1 _ pn(p) -1  pTfsymay(fp)
&) I;I {(1 P <1 ps"l(p - 1) >} I;Izsl}Sk =2 ’

and
E(s) =T (1 —p )ty

blkn
It is quite easy to treat the functions &,(s) and Z,(s) near the line 0 = 1.
Thus we can regard Z,(s) as {(s) /{,(s) essentially.

Next, for a constant 0 < ¢ <1 — (log(k — 1)) /(og(k + 1)), we
assume that N(n;1 — ¢, 2T,) = 0, and put » = ¢/32. Then the function
Z,(s) is analytic in the region 0 > 1 — ¢, | t| < 2T, and Hadamard’s three
circle theorem gives

max | Z,(s) | € exp(c,(log X)*),

1-n<0<1+n
[tI<T,

where ¢, > 0 is a constant. Therefore, on the integral in the right-hand side
of (6), we see

1 b+iT, Zn(s) ‘/’Xs-l s = @k(n) N L <j;1—n—iro + jl-l—n+ir,, " b+iT, >

2mi b—iT, s—1 2mi —iT, —n=iT, 1-7+iT,

=@,m) + O(T, .
Hence we have the following:
Lemma 1. Assume that n < X, and N(n;1 — ¢, exp(ylog X)) = 0
with some positive contsant ¢. Then we have

G, (n, vX) = 6,(n) + O<exp<— —;—m»

We also obtain

8,(n) = Z,(1) > (log 3n) ™"
by the known upper estimate for the residue of {,(s) at s = 1. Therefore we
conclude from (5) that the asymptotic formula (1) holds for # < X satisfying
n € I, and Nn;1 — ¢, exp(/log X)) = 0 with some ¢ > 0.
§4. It is easily seen that the number of the natural numbers # < X
with # € I, is O(/X). So, it suffices for the proof of our Theorem to show
that there exist positive constants ¢ and 0, depending only on k, such that

(7) > Nn;1l—c, exp(/log X)) < X'°.

n<X
nel,

At this stage, we find the most important difference between k = 2 and
k = 3. When k = 2, the function {,(s) /{(s) is the Dirichlet L function for
a certain real primitive character, unless # is a square. Therefore Bombieri's
zero density theorem for L functions is effectual for the treatment of the
singular series ®,(n, vX) (see Miech [6]). For k = 3, however, we can not
utilize such a known result. We shall prove a zero density theorem for
£,(s) 7L(s)’s. To this end, we use the following Lemma 2.
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Lemma 2. We put 8,(m) = ,Lt(m)zl'll,,m(pn(p) — 1). Let ¢ be any fixed
positive constant, and let {a,} be any sequence of complex numbers. Then we
have

® =| = asm|<x+nwmM = a,l

n<X' M-N<m<M M-N<m<M

2(r+1) r(r—1) .
Further, assume that M <X for a fixed natural number v. Then we
have

2
| = asom| <X T e+
n<X m<M m<M
PR z
+ X771 max <M1 max Iam|>.

M, <M M <m <2M,

Through the same argument as in the study of the zero density of
Dirichlet L functions, except that we employ the above Lemma 2 instead of
the large sieve inequality, we obtain the following zero density estimate for
Ca(s) 7L(s)’s.

Lemma 3. Let T=1, and let 0,=1— (r(r — 1)) with a natural
number v. Suppose that

log(k — 1) (r+1) (k=1)(3-207) rir=1

Then we have for oy < 0 < 1 oo
> Nm;o, ) € (XT)' 3-0-6,"¢

n<X
nel,

with any fixed € > 0.

We apply Lemma 3 with T =exp(logX),r=k+1,0,=1—
(k(k + 1)) 7', then we have (7), as required, for ¢ = (2k(k + 1)) ' and 6 =
(2k* + 2k + 4)™" for example.
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