8. On Rational Approximations to Linear Forms in Values of G-functions

By Makoto Nagata
Department of Mathematics, Tokyo Institute of Technology
(Communicatied by Shokichi Iyanaga, M. J. A., Jan. 12, 1994)

C. L. Siegel [8] defined E-functions and G-functions. They are solutions of linear differential equations which are expressed as Taylor series $\sum_{m=0}^{\infty}$ $a_{m} x^{m}$ with coefficients in an algebraic number field.

E-functions satisfy
(1) for any $\varepsilon>0$, the absolute values of $m!a_{m}$ and its conjugates do not exceed $C m^{\varepsilon m}$,
(2) there is a sequence of common denominator d_{m} for $a_{0}, a_{1}, 2!a_{2}, \ldots$, $m!a_{m}$ which does not exceed $C m^{\varepsilon m}$.

And G-functions satisfy
(3) the absolute values of a_{m} and its conjugates do not exceed C^{m},
(4) there is a sequence of common denominator d_{m} for $a_{0}, a_{1}, a_{2}, \ldots, a_{m}$ which does not exceed C^{m}.
(C is a sufficiently large positive constant which is independent of m.)
Siegel utilized E-functions to obtain some results in the theory of transcendental numbers and suggested that G-functions will be also useful for similar purposes. The theory of these functions has been developed by different authors. In particular, Shidlovskii [7] proved the transcendency of the values in E-functions using the classical Pade approximations. The purpose of this paper is to show that we can use the method of [7] to G-functions in making more precise the definition of Padé approximations to obtain the best possible bounds of irrationality measure for linear independence in values of G-functions in some cases.

We assume $f_{i}^{(j)}(x) \in \boldsymbol{Q}[[x]]$ have non zero radii of convergence at $x=0$.
We have the following.
Theorem A. Let $f_{i}(x)(i=1, \ldots, n)$ be a non zero solution of a scalar linear differential equation of the order m_{i} over $\boldsymbol{Q}(x)$:

$$
\left(\frac{d}{d x}\right)^{m_{i}} f_{i}(x)+a_{m_{i}-1}^{(i)}(x)\left(\frac{d}{d x}\right)^{m_{i}-1} f_{i}(x)+\cdots+a_{0}^{(i)}(x) f_{i}(x)=0
$$

where $\quad a_{j}^{(i)}(x) \in \boldsymbol{Q}(x)\left(i=1, \ldots, n ; j=0, \ldots, m_{i}-1\right)$. Put $f_{i}^{(j)}(x):=$ $\left(\frac{d}{d x}\right)^{j} f_{i}(x)$ and $m:=\sum_{i=1}^{n} m_{i} . \operatorname{Suppose} f_{i}^{(j)}(x)\left(i=1, \ldots, n ; j=0, \ldots, m_{i}-1\right)$ are linearly independent over $\boldsymbol{Q}(x)$. Let ε_{0} be fixed in $\frac{1}{2}>\varepsilon_{0}>0$. Then there are effective constants C_{1}, depending only on $f_{i}^{(j)}(x)(i=1, \ldots, n ; j=0, \ldots$, $\left.m_{i}-1\right), \varepsilon_{0}, m$ and C_{2}, depending only on $f_{i}^{(j)}(x)\left(i=1, \ldots, n ; j=0, \ldots, m_{i}\right.$ $-1), \varepsilon_{0}, m, r$ such that the following holds.

Let r be any rational number

$$
r=\frac{a}{b} \neq 0 a, b \in \boldsymbol{Z} \text { with }|b|^{\varepsilon_{0}}>C_{1}|a|^{2 m(m+1)}
$$

Then for arbitrary integers $H_{i}^{(j)}\left(i=1, \ldots, n ; j=0, \ldots, m_{i}-1\right)$ satisfying $H:=\max _{i=1, \ldots, n}\left(\left|H_{i}\right|\right)>C_{2}$ and $H_{i}:=\max _{j=0, \ldots, m_{i}-1}\left(\left|H_{i}^{(j)}\right|, 1\right)$, we have

$$
\left|\sum_{i=1}^{n} \sum_{j=0}^{m_{i}-1} H_{i}^{(j)} f_{i}^{(j)}(r)\right|>\frac{H^{1-\varepsilon_{0}}}{H_{1}^{m_{1}} \cdots H_{n}^{m_{n}}}
$$

Theorem A gives the best possible bounds in values of G -functions in the case of $m_{1}=\cdots=m_{n}=1$.

Under the conditions of Theorem A , we assume that $f_{i}^{(j)}(x)(i=1, \ldots$, $\left.n ; j=0, \ldots, m_{i}-1\right)$ is a system of G-functions satisfying the system of the first order differential equation over $\boldsymbol{Q}(x)$:
[Eq.1]

$$
\frac{d}{d x}\left(\begin{array}{c}
f_{1}^{(0)}(x) \\
\vdots \\
f_{1}^{\left(m_{1}-1\right)}(x) \\
\vdots \\
f_{n}^{(0)}(x) \\
\vdots \\
f_{n}^{\left(m_{n}-1\right)}(x)
\end{array}\right)=\left(\begin{array}{llll}
A_{1} & & & 0 \\
& A_{2} & & \\
& & \ddots & \\
0 & & & A_{n}
\end{array}\right)\left(\begin{array}{c}
f_{1}^{(0)}(x) \\
\vdots \\
f_{1}^{\left(m_{1}-1\right)}(x) \\
\vdots \\
f_{n}^{(0)}(x) \\
\vdots \\
f_{n}^{\left(m_{n}-1\right)}(x)
\end{array}\right)
$$

for $A_{i} \in M_{m_{i}}(\boldsymbol{Q}(x)): i=1, \ldots, n$.
For the proof of Theorem A we use Pade approximations for G-functions which are essentially the same as those Shidlovskii [7] used for E-functions. But in order to sharpen the bound, we shall use the following definitions.

Definition of Padé approximations. Let $f_{i}^{(j)}(x)(i=1, \ldots, n ; j=0, \ldots$, $\left.m_{i}-1\right) \in C[[x]]$. Let $\varepsilon>0$ be a sufficiently small and fixed real number. For positive parameters: $D, D_{i}(i=1, \ldots, n) \in \boldsymbol{Z}, T \in \boldsymbol{R}$, suppose that $P_{i}^{(j)}(x)\left(i=1, \ldots, n ; j=0, \ldots, m_{i}-1\right)$ are polynomials which satisfy deg $P_{i}^{(j)}(x) \leq D, \operatorname{ord}_{x=0} P_{i}^{(j)}(x) \geq D-D_{i}$ and further

$$
R(x):=\sum_{i=1}^{n} \sum_{j=0}^{m_{i}-1} P_{i}^{(j)}(x) f_{i}^{(j)}(x)
$$

satisfies $\operatorname{ord}_{x=0} R(x) \geq T$ and $R(x) \not \equiv 0$. Then we call $P_{i}^{(j)}(x)(i=1, \ldots, n$; $\left.j=0, \ldots, m_{i}-1\right)$ as Padé approximants and $R(x)$ as the remainder function in the Pade approximation problem with the parameters (T, D, D_{i}) for $f_{i}^{(j)}(x)\left(i=1, \ldots, n ; j=0, \ldots, m_{i}-1\right)$. Moreover we assume $D:=$ $\max _{i=1, \ldots, n} D_{i}$ and

$$
D_{i} \geq 2 \varepsilon D, T \geq\left[\sum_{i=1}^{n} m_{i} D_{i}-\varepsilon D\right]
$$

If we take the absolute values of coefficients of the linear form of Theorem A, H_{i}, is larger, we should make D_{i} of Padé approximants larger and vise versa.

Our proof of Theorem A requires a sequence of many Lemmas, so we will describe only a key Lemma, which is an improvement of Shidlovskii's one.

Now we define m-tuples of polynomials such that

$$
\bar{p}^{[0]}:={ }^{t}\left(P_{1}^{(0)}(x) \ldots P_{1}^{\left(m_{1}-1\right)}(x) \ldots P_{n}^{(0)}(x) \ldots P_{n}^{\left(m_{n}-1\right)}(x)\right)
$$

and recursively for $k=0,1, \ldots$,

$$
\bar{p}^{[k+1]}(x):=d(x)\left(\frac{d}{d x} I+{ }^{t} A\right) \bar{P}^{[k]}(x)
$$

where A is the coefficient matrix in the differential equation [Eq.1] and $d(x)=($ the common denominator of entries of $A) \in \boldsymbol{Z}[x]$.

Lemma [cf. 7, ch. 3, lemma 10]. Let $f_{i}^{(j)}(x)\left(i=1, \ldots, n ; j=0, \ldots, m_{i}\right.$ - 1) satisfy the differential equation [Eq.1] and be linearly independent over $\boldsymbol{C}(x)$. Then for any number x_{0} such that $x_{0} d\left(x_{0}\right) \neq 0$, we have

$$
\operatorname{rank}\left(\bar{P}^{[k]}\left(x_{0}\right)\right)_{k=0, \ldots,[2 \varepsilon D]}=m
$$

for any large D.
We use the property of the coefficient matrix of diagonal blocks in the differential equation [Eq.1] to show Theorem A. However we need not adhere to this type of the coefficient matrix. We take another differential equation over $\boldsymbol{Q}(x)$ substituted for [Eq.1] as following:
[Eq.2]

$$
\frac{d}{d x}\left(\begin{array}{c}
f_{1}^{(0)}(x) \\
\vdots \\
f_{1}^{\left(m_{1}-1\right)}(x) \\
\vdots \\
f_{n}^{(0)}(x) \\
\vdots \\
f_{n}^{\left(m_{n}-1\right)}(x)
\end{array}\right)=\left(\begin{array}{llll}
A_{1} & & & 0 \\
& A_{2} & & \\
& & \ddots & \\
* & & & A_{n}
\end{array}\right)\left(\begin{array}{c}
f_{1}^{(0)}(x) \\
\vdots \\
f_{1}^{\left(m_{1}-1\right)}(x) \\
\vdots \\
f_{n}^{(0)}(x) \\
\vdots \\
f_{n}^{\left(m_{n}-1\right)}(x)
\end{array}\right)
$$

for $A_{i} \in M_{m_{i}}(\boldsymbol{Q}(x)): i=1, \ldots, n$.
Theorem B. Let $f_{i}^{(j)}(x)\left(i=1, \ldots, n ; j=0, \ldots, m_{i}-1\right)$ be a non zero solution of the linear differential equation over $\boldsymbol{Q}(x)$ [Eq.2]. Put $m:=\sum_{i=1}^{n} m_{i}$. Suppose $f_{i}^{(j)}(x)\left(i=1, \ldots, n ; j=0, \ldots, m_{i}-1\right)$ are linearly independent over $\boldsymbol{Q}(x)$. Let ε_{0} be fixed in $\frac{1}{2}>\varepsilon_{0}>0$. Then there are effective constants C_{3}, depending only on $f_{i}^{(j)}(x)\left(i=1, \ldots, n ; j=0, \ldots, m_{i}-1\right), \varepsilon_{0}, m$ and C_{4}, depending only on $f_{i}^{(j)}(x)\left(i=1, \ldots, n ; j=0, \ldots, m_{i}-1\right), \varepsilon_{0}, m, r$ such that the following holds.

Let r be any rational number

$$
r=\frac{a}{b} \neq 0 \quad a, b \in \boldsymbol{Z} \text { with }|b|^{\varepsilon_{0}}>C_{3}|a|^{2 m(m+1)}
$$

Then for arbitrary integers $H_{i}^{(j)}\left(i=1, \ldots, n ; j=0, \ldots, m_{i}-1\right)$ satisfying H_{1} $>C_{4}$ and $H_{1} \geq H_{2} \geq \cdots \geq H_{n}>0$, we have

$$
\left\lvert\, \sum_{i=1}^{n} \sum_{\substack{j=0 \\ m_{1}-1} H_{i}^{(j)} f_{i}^{(j)}(r) \left\lvert\,>\frac{H_{1}^{1-\varepsilon_{0}}}{H_{1}^{m_{1}} \cdots H_{n}^{m_{n}}}\right., ~, ~, ~}^{\text {j }}\right.
$$

where $H_{i}:=\max _{j=0, \ldots m_{i}-1}\left(\left|H_{i}^{(j)}\right|\right) \neq 0$.
Theorem B applies some concrete G-functions such as the logarithm and polygarithms.

The details will appear elsewhere.

References

[1] Y. André: G-functions and Geometry. Max-Planck-Institut, Bonn (1989).
[2] A. Baker: Transcendental Number Theory. Cambridge University Press, Cambridge (1979).
[3] E. Bombieri: On G-functions. Recent Progress in Analytic Number Theory, Academic Press, New York, vol. 2 (1981).
[4] D. V. Chudnovsky and G. V. Chudnovsky: Applications of Padé approximations to diophantine inequalities in values of G-functions. Lect. Notes in Math., vol. 1135, Springer-Verlag, Berlin, Heidelberg, New York (1985).
[5] G. V. Chudnovsky: On some applications of diophantine approximations. Proc. Natl. Acad. Sci. USA, 81 (1984).
[6] A. I. Galočhkin: Estimates from below of polynomials in the values of analytic functions of a certain class. Math. USSR Sbornik, 24 (1974): Original article in Math. Sbornik, 95 (137)(1974).
[7] A. B. Shidlovskii: Transcendental Numbers. Walter de Gruyter, Berlin, New York (1989).
[8] C. L. Siegel: Über einige Anwendungen diophantischer Approximationen. Abh. Preuss. Akad. Wiss., Phys. Math. Kl. nr. 1 (1929).
[9] K. Vảănănen: On linear forms of a certain class of G-functions and p-adic G-functions. Acta Arith., 36 (1980).

