8. On Rational Approximations to Linear Forms in Values of G-functions

By Makoto NAGATA

Department of Mathematics, Tokyo Institute of Technology (Communicatied by Shokichi IYANAGA, M. J. A., Jan. 12, 1994)

C. L. Siegel [8] defined E-functions and G-functions. They are solutions of linear differential equations which are expressed as Taylor series $\sum_{m=0}^{\infty} a_m x^m$ with coefficients in an algebraic number field.

E-functions satisfy

(1) for any $\varepsilon > 0$, the absolute values of $m!a_m$ and its conjugates do not exceed $Cm^{\varepsilon m}$,

(2) there is a sequence of common denominator d_m for $a_0, a_1, 2!a_2, \ldots, m!a_m$ which does not exceed $Cm^{\varepsilon m}$.

And G-functions satisfy

(3) the absolute values of a_m and its conjugates do not exceed C^m ,

(4) there is a sequence of common denominator d_m for $a_0, a_1, a_2, \ldots, a_m$ which does not exceed C^m .

(C is a sufficiently large positive constant which is independent of m.)

Siegel utilized E-functions to obtain some results in the theory of transcendental numbers and suggested that G-functions will be also useful for similar purposes. The theory of these functions has been developed by different authors. In particular, Shidlovskii [7] proved the transcendency of the values in E-functions using the classical Padé approximations. The purpose of this paper is to show that we can use the method of [7] to G-functions in making more precise the definition of Padé approximations to obtain the best possible bounds of irrationality measure for linear independence in values of G-functions in some cases.

We assume $f_i^{(j)}(x) \in \mathbf{Q}[[x]]$ have non zero radii of convergence at x = 0. We have the following.

Theorem A. Let $f_i(x)$ (i = 1, ..., n) be a non zero solution of a scalar linear differential equation of the order m_i over Q(x):

 $\begin{pmatrix} \frac{d}{dx} \end{pmatrix}^{m_i} f_i(x) + a_{m_i-1}^{(i)}(x) \left(\frac{d}{dx}\right)^{m_i-1} f_i(x) + \dots + a_0^{(i)}(x) f_i(x) = 0,$ where $a_j^{(i)}(x) \in \mathbf{Q}(x)$ $(i = 1, \dots, n; j = 0, \dots, m_i - 1)$. Put $f_i^{(j)}(x) := \left(\frac{d}{dx}\right)^j f_i(x)$ and $m := \sum_{i=1}^n m_i$. Suppose $f_i^{(j)}(x)$ $(i = 1, \dots, n; j = 0, \dots, m_i - 1)$ are linearly independent over $\mathbf{Q}(x)$. Let ε_0 be fixed in $\frac{1}{2} > \varepsilon_0 > 0$. Then there are effective constants C_1 , depending only on $f_i^{(j)}(x)$ $(i = 1, \dots, n; j = 0, \dots, m_i - 1)$, ε_0 , m and C_2 , depending only on $f_i^{(j)}(x)$ $(i = 1, \dots, n; j = 0, \dots, m_i - 1)$, ε_0 , m, r such that the following holds. Let r be any rational number

M. NAGATA

$$r = \frac{a}{b} \neq 0 \ a, \ b \in \mathbb{Z} \ with \ | \ b |^{\varepsilon_0} > C_1 \ | \ a |^{2m(m+1)}.$$

Then for arbitrary integers $H_i^{(j)}$ $(i = 1, ..., n; j = 0, ..., m_i - 1)$ satisfying $H := \max_{i=1,...,n} (|H_i|) > C_2$ and $H_i := \max_{j=0,...,m_i-1} (|H_i^{(j)}|, 1)$, we have $|\sum_{i=1}^{n} \sum_{j=1}^{m_i-1} H_i^{(j)} f_i^{(j)}(r)| > \frac{H^{1-\varepsilon_0}}{1-\varepsilon_0}$

$$\Big|\sum_{i=1}^{n}\sum_{j=0}^{n}H_{i}^{(j)}f_{i}^{(j)}(r)\Big| > \frac{H}{H_{1}^{m_{1}}\cdots H_{n}^{m_{n}}}$$

Theorem A gives the best possible bounds in values of G-functions in the case of $m_1 = \cdots = m_n = 1$.

Under the conditions of Theorem A, we assume that $f_i^{(j)}(x)$ $(i = 1, ..., n; j = 0, ..., m_i - 1)$ is a system of G-functions satisfying the system of the first order differential equation over Q(x):

$$[Eq.1] \qquad \frac{d}{dx} \begin{pmatrix} f_1^{(0)}(x) \\ \vdots \\ f_1^{(m_1-1)}(x) \\ \vdots \\ f_n^{(0)}(x) \\ \vdots \\ f_n^{(m_n-1)}(x) \end{pmatrix} = \begin{pmatrix} A_1 & 0 \\ A_2 & \\ 0 & A_n \end{pmatrix} \begin{pmatrix} f_1^{(0)}(x) \\ \vdots \\ f_1^{(m_1-1)}(x) \\ \vdots \\ f_n^{(0)}(x) \\ \vdots \\ f_n^{(m_n-1)}(x) \end{pmatrix}$$

for $A_i \in M_{m_i}(Q(x)) : i = 1, ..., n$.

For the proof of Theorem A we use Padé approximations for G-functions which are essentially the same as those Shidlovskii [7] used for E-functions. But in order to sharpen the bound, we shall use the following definitions.

Definition of Padé approximations. Let $f_i^{(j)}(x)$ $(i = 1, ..., n; j = 0, ..., m_i - 1) \in C[[x]]$. Let $\varepsilon > 0$ be a sufficiently small and fixed real number. For positive parameters: $D, D_i(i = 1, ..., n) \in \mathbb{Z}, T \in \mathbb{R}$, suppose that $P_i^{(j)}(x)$ $(i = 1, ..., n; j = 0, ..., m_i - 1)$ are polynomials which satisfy deg $P_i^{(j)}(x) \leq D$, $\operatorname{ord}_{x=0} P_i^{(j)}(x) \geq D - D_i$ and further

$$R(x) := \sum_{i=1}^{n} \sum_{j=0}^{m_i-1} P_i^{(j)}(x) f_i^{(j)}(x)$$

satisfies $\operatorname{ord}_{x=0} R(x) \geq T$ and $R(x) \neq 0$. Then we call $P_i^{(j)}(x)$ $(i = 1, \ldots, n; j = 0, \ldots, m_i - 1)$ as Padé approximants and R(x) as the remainder function in the Padé approximation problem with the parameters (T, D, D_i) for $f_i^{(j)}(x)$ $(i = 1, \ldots, n; j = 0, \ldots, m_i - 1)$. Moreover we assume $D := \max_{i=1,\ldots,n} D_i$ and

$$D_i \geq 2\varepsilon D, \ T \geq \left[\sum_{i=1}^n m_i D_i - \varepsilon D\right].$$

If we take the absolute values of coefficients of the linear form of Theorem A, H_i , is larger, we should make D_i of Padé approximants larger and vise versa.

Our proof of Theorem A requires a sequence of many Lemmas, so we will describe only a key Lemma, which is an improvement of Shidlovskii's one.

Now we define m-tuples of polynomials such that

 $\bar{p}^{[0]} := {}^{t}(P_1^{(0)}(x) \ldots P_1^{(m_1-1)}(x) \ldots P_n^{(0)}(x) \ldots P_n^{(m_n-1)}(x)),$ and recursively for $k = 0, 1, \ldots,$

$$\overline{p}^{[k+1]}(x) := d(x) \left(\frac{d}{dx} I + {}^{t}A\right) \overline{p}^{[k]}(x),$$

where A is the coefficient matrix in the differential equation [Eq.1] and $d(x) = (\text{the common denominator of entries of } A) \in \mathbb{Z}[x].$

Lemma [cf. 7, ch. 3, lemma 10]. Let $f_i^{(j)}(x)$ $(i = 1, ..., n; j = 0, ..., m_i)$ (-1) satisfy the differential equation [Eq.1] and be linearly independent over C(x). Then for any number x_0 such that $x_0 d(x_0) \neq 0$, we have $\operatorname{rank}(\overline{p}^{[k]}(x_0)) = m$ ra

$$2nk(\tilde{p}^{(m)}(x_0))_{k=0,\dots,[2\varepsilon D]} = n$$

for any large D.

We use the property of the coefficient matrix of diagonal blocks in the differential equation [Eq.1] to show Theorem A. However we need not adhere to this type of the coefficient matrix. We take another differential equation over Q(x) substituted for [Eq.1] as following:

$$[Eq.2] \qquad \frac{d}{dx} \begin{pmatrix} f_1^{(0)}(x) \\ \vdots \\ f_1^{(m_1-1)}(x) \\ \vdots \\ f_n^{(0)}(x) \\ \vdots \\ f_n^{(m_n-1)}(x) \end{pmatrix} = \begin{pmatrix} A_1 & 0 \\ A_2 & \\ & \ddots & \\ & & A_n \end{pmatrix} \begin{pmatrix} f_1^{(0)}(x) \\ \vdots \\ f_1^{(m_1-1)}(x) \\ \vdots \\ f_n^{(0)}(x) \\ \vdots \\ f_n^{(m_n-1)}(x) \end{pmatrix}$$

for $A_i \in M_{m_i}(Q(x)) : i = 1, ..., n$. **Theorem B.** Let $f_i^{(j)}(x)$ $(i = 1, ..., n; j = 0, ..., m_i - 1)$ be a non zero solution of the linear differential equation over Q(x) [Eq.2]. Put $m := \sum_{i=1}^{n} m_i$. Suppose $f_i^{(j)}(x)$ $(i = 1, ..., n; j = 0, ..., m_i - 1)$ are linearly independent over Q(x). Let ε_0 be fixed in $\frac{1}{2} > \varepsilon_0 > 0$. Then there are effective constants C_3 , depending only on $f_i^{(j)}(x)$ $(i = 1, \ldots, n; j = 0, \ldots, m_i - 1)$, ε_0 , m and C_4 . depending only on $f_i^{(j)}(x)$ $(i = 1, ..., n; j = 0, ..., m_i - 1)$, ε_0, m, r such that the following holds.

Let r be any rational number

$$r = \frac{a}{b} \neq 0$$
 a, $b \in \mathbb{Z}$ with $|b|^{\varepsilon_0} > C_3 |a|^{2m(m+1)}$

Then for arbitrary integers $H_i^{(j)}$ $(i = 1, ..., n; j = 0, ..., m_i - 1)$ satisfying H_1 $> C_4$ and $H_1 \ge H_2 \ge \cdots \ge H_n > 0$, we have

$$|\sum_{i=1}^{n}\sum_{j=0}^{m_i-1}H_i^{(j)}f_i^{(j)}(r)| > \frac{H_1^{n-1}}{H_1^{m_1}\cdots H_n^{m_n}},$$

where $H_i := \max_{j=0,\dots,m_i-1}(|H_i^{(j)}|) \neq 0.$

Theorem B applies some concrete G-functions such as the logarithm and polygarithms.

The details will appear elsewhere.

M. NAGATA

References

- [1] Y. André: G-functions and Geometry. Max-Planck-Institut, Bonn (1989).
- [2] A. Baker: Transcendental Number Theory. Cambridge University Press, Cambridge (1979).
- [3] E. Bombieri: On G-functions. Recent Progress in Analytic Number Theory, Academic Press, New York, vol. 2 (1981).
- [4] D. V. Chudnovsky and G. V. Chudnovsky: Applications of Padé approximations to diophantine inequalities in values of G-functions. Lect. Notes in Math., vol. 1135, Springer-Verlag, Berlin, Heidelberg, New York (1985).
- [5] G. V. Chudnovsky: On some applications of diophantine approximations. Proc. Natl. Acad. Sci. USA, 81 (1984).
- [6] A. I. Galočhkin: Estimates from below of polynomials in the values of analytic functions of a certain class. Math. USSR Sbornik, 24 (1974): Original article in Math. Sbornik, 95 (137)(1974).
- [7] A. B. Shidlovskii: Transcendental Numbers. Walter de Gruyter, Berlin, New York (1989).
- [8] C. L. Siegel: Über einige Anwendungen diophantischer Approximationen. Abh. Preuss. Akad. Wiss., Phys. Math. Kl. nr. 1 (1929).
- [9] K. Väänänen: On linear forms of a certain class of G-functions and p-adic G-functions. Acta Arith., 36 (1980).