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We study here a kind of homogeneous coordinate rings of matrix alge-
bras over an elliptic curve. Let X be an elliptic curve over an algebraically
closed field k with char(k) =/= 2. Choose a point P X and let (P)
be the invertible gx-module associated to the divisor P. For a positive inte-
ger n let gn be an indecomposable locally free Ux-module of rank n which is

a successive extension of Ux. Such a module exists uniquely up to isomorph-
ism ([2]). We form the Ox-algebra gnd(gn), the sheaf of local endomorphisms
of gn, and then form a graded k-algebra

A(n) F(X, 8nd($) @) Hom($, 8 @ ).
0 0

In this paper we give an explicit description of the algebra A(n). Details and
proofs will appear elsewhere.

1. Realization of A(n) as a matrix algebra. Put S @oF(X, ).
This is a commutative graded k-algebra. For an x-module we put
F.() @ F(X, ), which is a graded S-module. Also A(n)
is an S-algebra. Since is ample, we have A(n) Ends(F. (8,) ) as
S-algebras (cf. [1]).

The algebra S is generated by suitable homogeneous elements t, x, y of
2

degree 1, 2, 3, respectively, with relation y x(x- t) (x- Rt) for some
R k--{0, 1} ([3, p. 336]). We fix t,x, y, R throughout. Put v=x--
( +l)t, u= (x--t)(x-t).

Let R k[t, x], a polynomial subalgebra of S. Then S R Ry. De-
fine a graded S-module M as follows. M is a free graded R-module with
basis a, fl, T for i> 0 with dega= 0, degfl 1, degT 2. The ac-
tion of y on M is given by

a 3EYr,-x fl+ + at r- + txr+
where fl0 ta, g0 xa and O 1 for an odd i, O--0 for an even i,

E 1 O. For n 1 define a graded S-submodule M(n) of M to be the
free R-submodule generated by a, fl, 7 for 1 K i K n 1 and xfl, + tT.

Proposition 1. F. ($n) M(n) as graded S-modules.
So we can identify A(n) Ends(M(n)).

Though the S-module M is not free, the S[]-module M[] Sl[
1

@sM is free with basis a, i 0, given by a--r if i is odd, a
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1(/t3/ v)"i) if/is even. Also M(n)[-] has a basis c for0 <_iNnu
1.

2. Generators, relations and bases. We first give generators of A

A(n). Define an s[--ly]-linear map f" M(n)[-] M(n)[-] by

ty (( + 1)v + ,t)x
f(o) o:i_ ux ai- + u

2ty vx
u a-4 + u ai-s if i is even

t3y
f(a) a_ + x

(+ 1)x--/t+ x
/ty

if is oddOi_ -- -- Oi_4

where we understand -- 0 for 4 0. It can be shown that f restricts to
an S-linear map M(n)-- M(n) of degree 0, which we denote also by f We
have f’= 0 and the degree 0 part A0 of A is an n dimensional k-algebra
generated by f

We can also define an S-linear map g :M(n) M(n) as follows. When
n is even,

Yg(ao) tan_l X n-2

y + t((2 + 1)x- t) ty
g(a) a_ x a_ + u

ty tvx
g(a) u a’- + u a-
g(a) 0 for i > 2,

and when n is odd,
vy

g(ao) ta_ n-2

Yg(a) = a._ + ( + 1)ta._

g(a)
t2y ( vy )u n-z + (-- 1)(i-3)/z tn_

U n--i
3,odd

g(ai) 0 for i > 2.
Then g is a map of degree 1, so belongs to the degree 1 part A.

From now on we assume n > 2.
Theorem 2. A is a free R-module of rank 2n with basis f fgf

f gfn-gf f igfn-2gfn-ag#rO < i< n-- 1 0 < j < n-- 2
Regard A as a left Ao @ Ao-module by (a @ b) ab.
Theorem 3. A+ @>i is a free Ao Ao-module with basis

(gf-) ’g, (gf*-) (gf"-)gf-Sg for i, j O.
Theorem 4. The k-algebra A is generated by f and g. The relations be-

tween them are generated by the folling ones.
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Case n is even" fn 0 and n 2 quadratic relations of the form
gfkg Ak gfn-3g + B," gf-lg forO <- k E n- 2, k :/: n- 3

with A, B Ao @ Ao.
Case n is odd" f’--O and n- 2 quadratic relations as above and one

cubic relation of the form
gfn-3gf-g_ C" gfn-gf-g + D" gfn-lgf-g + E. gf-gfn-g
wth C, D, E Ao Ao.

The theorems fail when n 2. The generators of A(2) should be f, g, h,
where h is an element of degree 2 defined by h(ceo) xc1, h(c) 0.

3. Case n is even. The relations in the previous theorem are implicit,
but when n is even, we can give explicit defining equations for A, using addi-
tional generators. We define e Ao and g+ A by

e(cei) o_ for all i
vy

g+ (ao) ta_2 Oln-3

g+ (%) loin_ 21-" (, -JI- 1)tc._
vy

g+(az) =---a_ + (a + 1)tc_.

g+(%) 0fori>2.
Theorem 5. If n is even and n > 2, the k-algebra A has the following pre-

sentation. The generators are f, e, g, g+. The relations are

e--O
fz= (1 + (/2 + 1)e) (1 +/2e) (1 + e)e
fg(1 + ( + 1)e) + (1 + (a + 1)e)gf

g+ q- (/ q- 1)eg+ + (/2 + 1)g+e +/2eZg+ + ((/2 q- 1) q- )eg+e 4-
g+ez + /(/2 + 1)eZg+e +/(/2 + 1)eg+ez

n--4 rt--

ge z g /g+e z g+
n-4 n-2

g+ez g+- ( + 1)g+e z g+

geg geg+ O for O <_ j <_
2
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