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In this note we study trajectories of charged particles under the action
of a Kghler magnetic field, a magnetic field corresponding to the Ktihler form,
on a complex projective space. We show that they are small circles on a

totally geodesic embedded 2-dimensional sphere.
A magnetic field on a complete Riemannian manifold M is a closed

2-form B. Let D -QB TM TM denote the skew symmetric operator on
the tangent bundle satisfying B(X, Y) (X, D(Y)). We call a curve )" on
M a trajectory for this magnetic field if it is a solution of the equation

d
D(’). Every trajectory ?" has constant speed because

2(D(’(t)), ’(t)) 0. If )" is a trajectory of constant speed c for a magnetic
field B, the curve a(t) ’(t/c) is a trajectory of unit speed for the magne-

tic field c We may therefore suppose trajectories are parametrized by
their arc-length.

A magnenic field is called uniform if the associated skew symmetric
operator is parallel ITD 0. Typical examples of uniform magnetic fields
are scalar multiples of the volume form k-dvol on Riemann surfaces. On sur-
faces of constant curvature trajectories of such magnetic fields are
well-known. On a sphere trajectories are small circles, on a Euclidean plane
they are circles (in usual sense), and they are all closed. On a hyperbolic
plane the feature is quite different. When the strength ]kl is greater than 1,
trajectories are closed. But when it is not greater than I they are open (see
[2] and also [5]).

We here give another example of uniform magnetic fields. Let (M, jr) be
a Kfihler manifold and B] denote the Kfihler form; B](X, Y)= (X, JY).
Then the closed 2-form B kB] with constant k is a uniform magnetic
field. We shall call such field a Kihler magnetic field. It is quite natural to
study trajectories for Kfihler magnetic fields on manifolds of constant holo-
morphic sectional curvature. Trivially we can conclude that trajectories for a
Khler magnetic field are congruent on a manifold of constant holomorphic
sectional curvature. That is, for given two trajectories )" and a (of unit
speed) for a Kfihler magnetic field, we have a holomorphic isometry o with

In this note we show an explicit expression of trajectories for Khler
S2n+l

magnetic fields on a complex projective space. Let r" CP denote
the Hopf fibration of a standard sphere onto a complex projective space. The
tangent space of CP at 7r(x) can be identified with the horizontal subspace
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of the tangent space of Sn+l at x"
T(x)CP= {[x, u]lu C+ <x u> =0}

where [x, u] denotes the orbit of (x, u) under the action
of U(1) {/ C I/l 1} on to the tangent bundle of the unit sphere.

Theorem. (1) Every trajectory (of unit speed) for the Kdhler magnetic field
kBy on a complex projective space CPn (4) of holomorphic sectional curvature 4 is

a simple closed curve of period 27r/k + 4.
(2) It lies on a totally geodesic embedded complex projective line.

(3) If k :/: O, its horizontal lift on the sphere is a helix of order 3 with curv-
ature k and 1.
(4) The trajectory T with 7"(0) 7r(x) and ’(0) [x, u] U(x)CPn

has the
equation

,) e’’)ju),?’(t) 7r((1 + a2)-(eat + a e x + a(1 + a)-(ebit

where a (k + k + 4)/2 and 3 (k- v/k2 + 4)/2.
Proof Let V denote the connection of the standard sphere. For hori-

zontal vector fields X and Y we have the following relation [4]"
(TxY VxY + (X, ]Y)JN,

where N is the outward unit normal on Sn+ Cn+. Using this relation we
find that any horizontal lift " of a trajectory " for k’B] satisfies.

’ ._ J’= k{, -]N

._ Jg ]’,
which leads us to the third assertion. Regarding this curve on the sphere
S2n+l

as a curve in C"+ we see that it satisfies the equation (t) k.
J{’(t)- ’(t). Under the initial condition (0) x and {’(0) u we solve
this linear ordinary differential equation and get that

’(t) (1 + a)-(eat + aet) t ,t)x+a(l+a) (e --e Ju
This expression guarantees that " lies on a 3 dimensional sphere, hence im-
plies the second assertion. By this we can conclude that 7" is a small circle of
geodesic curvature k on a sphere of curvature 4, which leads us to the first
assertion. (Paying an attention to the linearly independence of x, Ju, one can
also check this assertion by a direct calculation.)
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