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Let L be an abelian function field of two variables over C, and K be a
Galois subfield of L, i.e., L is a finite algebraic Galois extension of K. We
classify such K by a suitable complex representation of the Galois group
G Gal(L/K).

Let A be the abelian surface with the function field L. Since g G in-
duces an automorphism of A, we have a complex representation gz M(g)z
+ t(g), where M(g) GL.(C), z C, and t(g) C. Fixing the repre-
sentation, we put Go (g G IM(g) 1}, H (M(g) g G} and
H {M(g) HI detM(g) 1}. Then we have the following exact sequ-
ences of groups:

1 ---* Go--* G-- H---’ 1,
1 ---’ H1---’ H-* C,--- 1,

where d(M(g))"-detM(g), and H/HI is a cyclic group C of order
n <_ 12. The quotient surface A/Go is also an abelian surface. Note that the
function field of the surface A/G is isomorphic to K.

Definition. We call H a holonomy part of the complex representation of
G.

The holonomy part is completely determined by Fujiki [1], in which he
studies automorphisms fixing the origin. By a slightly different method from
his, i.e., by considering Sylow groups of H, we can show the following readi-
ly.

Propositionl. The order of His5, 10 or2a 3b, where a <_ 5 and b <_ 2.
Since the commutative group Go is a normal subgroup of G, we have
Corollary 2. The Galois group G is solvable.
The main purpose of this note is to classify K by using the holonomy

part. But we have no suitable language in the category of fields, so we do the
classification in the equivalent category, i.e., using the language of the bira-
tional classification of algebraic surfaces. Note that in the case of elliptic
curve E the similar classification is simple, i.e., E/G is rational if and only
if H is not trivial.

(x O) and e denote exp(2cLet [x, y] denote the diagonal matrix
0 y.

v/- 1/n). Then we have
Lemma 3. If H contains [en, en], where n 3, 4, 6, then A is isomorphic

to E E, where E C/(1, e.).
Since each M H defines also an automorphism of A, the quotient
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spaces X-- A/G and X’ A/H are normal algebraic surfaces. Now, let
be a nonsingular model of an algebraic surface Y. Then, let q(Y)and
Pm(Y) denote the irregularity and the m-genus of z respectively.

Lemma 4. We have that q(X) q(Xg P (X) P (X’) and P(X) >
Pm(X’).

Let S be a (relatively) minimal model of X and F(G) denote the set of
fixed points of G. Then the result is stated as follows:

Theorem 5. We have the following classification table.

H structure of S
abelian surface

H ([1,

H <[1, 1], [- 1, 1]>

K3 surface
F(G) 0
F(G) 4:0

F(G) finite
F(G) curve

hyperelliptic surface
ruled surface with q 1

Enriques surface
rational surface

except the above rational surface
In this table n 2,3,4, or 6.

Corollary 6. If the order of H > 24 or the degree of the eigenvalue(s) of M
is 4, then S is rational.

When the degree of the eigenvalue of M is 4, A is isogenous to A(n),
which is defined as follows (cf. [5]): let en, n 5,8,10 or 12. Put

where k 2,3,3,5 corresponding to value n respectively. Then A(n)
is an abelian surface and M [, k] defines an automorphism of A(n).
Furthermore in the case when n--5, A is isomorphic to A(5), which is a
simple abelian surface and is the Jacobian variety of the curve y2= xS_+_ 1.
Looking at the tables in Fujiki [1], we notice that S is rational in many cases.
But if A is simple (and S is rational), then there exists only one abelian sur-
face A A(5).

If K is rational, then the order of G >_ 3. We know that there is only
one abelian surface if K is rational and the order of G is 3. In this case A
must be E x E, where E’- C/(1, e3) and H= ([e3, ca]) (cf. [4]). Hence
we have that dr(E x E) 3, where dr is the degree of irrationality (see,
[6]). Except this case it seems difficult to find the value dr(A) even in the
case when K is rational. So we ask the following

Question 7. Find the value dr(A).
Example 8. Note that the holonomy part which defines an Enriques

surface is unique. An example of G is as follows’let A E x
C/(1, v), Imv > 0 and G (gl, g.), where

glz [-- 1, 1]z, and
gz [1, 1]z +t(1/2, 0).

Note 9. In general Pro(A/G) and Pm(A/H) are distinct from each
other. In fact, if H ([1, en]) and F(G) 0, then A/G and A/H are
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hyperelliptic and ruled surfaces respectively. All the G which define
hyperelliptic surfaces are given in Suwa [3].

The proof of our results depends in many parts on the work of Katsura
[2]. Details will appear elsewhere.
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