1. On Real Submanifolds of Kähler Manifolds Foliated by Complex Submanifolds

By Takashi INABA*) and Michael A. MISHCHENKO**)

(Communicated by Heisuke HIRONAKA, M. J. A., Jan. 12, 1994)

This work is motivated by the study of topological properties of Levi-flat hypersurfaces of complex manifolds (see e.g. [1] and [2]). Let X be a Kähler manifold and M a compact orientable real submanifold of X. We suppose that M admits a foliation \mathcal{F} whose leaves are complex submanifolds of X. In this setting, we are interested in investigating the relation between the topology of \mathcal{F} and the complex structure of X. We first observe that the exactness of the Kähler form implies the intricacies of \mathcal{F} (Theorem 1 and Remark), and then apply it to the nonexistence problem of Levi-flat hypersurfaces in CP^2 (Corollary 2).

Theorem 1. Let X, M and \mathcal{F} be as above, and let $p = \dim_c \mathcal{F}$. If the p-th power of the Kähler form of X is exact when restricted to M, then \mathcal{F} has no nontrivial foliation cycles.

See e.g. [5] for the definition of foliation cycles.

Proof. Suppose \mathscr{F} has a nontrivial foliation cycle C. Since each leaf of \mathscr{F} is a complex submanifold of X, the p-th power of the Kähler form ω of X restricts to a volume form on each leaf. Then, by the local integration formula of foliation cycles ([5, Theorem I.12]) we see that the nontriviality of C implies the nonvanishing of the homological pairing $\langle C, \omega^p | M \rangle$. Thus, $\omega^p | M$ cannot be exact and the proof is complete.

Remark. It is known ([3], [5]) that if a foliation \mathcal{F} on a compact manifold M admits no nontrivial foliation cycles, \mathcal{F} must satisfy the following properties:

(1) Every leaf of ${\mathcal F}$ has exponential growth . In particular, ${\mathcal F}$ has no compact leaves.

(2) If codim $\mathcal{F} = 1$, some leaf of \mathcal{F} has nontrivial holonomy.

(3) If codim $\mathcal{F} = 1$ and dim M = 3, $\pi_1(M)$ has exponential growth.

Corollary 1. Let M be a compact smooth real hypersurface of $\mathbb{CP}^n (n \ge 2)$. Suppose that the Levi form on M has constant rank $k(0 \le k \le \lfloor n/2 \rfloor - 1 \rfloor$ and hence defines a codimension (2k + 1) foliation \mathcal{F} on M by complex submanifolds of $\mathbb{CP}^n([4])$. Then, \mathcal{F} has no nontrivial foliation cycles.

Proof. We denote by $i: M \to CP^n$ the inclusion map and by ω the standard Kähler form of CP^n . By Theorem 1, it suffices to show that $i^*\omega^{n-k-1}$ is exact for $0 \le k \le \lfloor n/2 \rfloor - 1$. Suppose the contrary. One can find a 2(n - k - 1)-cycle α of M such that $\langle i^*\omega^{n-k-1}, \alpha \rangle \ne 0$. Then, $\langle \omega^{n-k-1}, i_* \alpha \rangle \ne 0$. Hence, $i_*[\alpha]$ is nontrivial in $H_{2(n-k-1)}(CP^n; \mathbb{Z})$. From this it follows that the

^{*)} College of Arts and Sciences, Chiba University.

^{*)} Department of Mathematics, Moscow State University, Russia.

self-intersection of $i_*[\alpha]$ does not vanish. On the other hand, since the normal bundle of a real hypersurface in \mathbb{CP}^n is always trivial, by deforming $i_*\alpha \subset M$ along a normal vector field to M one can easily remove the selfintersection of $i_*[\alpha]$ geometrically. This is a contradiction, which completes the proof.

It has been conjectured (by folklore) that CP^2 admits no compact smooth Levi-flat hypersurfaces. Our argument can show the truth of the conjecture in the case when $\pi_1(M)$ is not big:

Corollary 2. Let M be a compact orientable 3-manifold such that $\pi_1(M)$ has nonexponential growth. Then M cannot be embedded in CP^2 as a smooth Levi-flat hypersurface.

Proof. This follows from Corollary 1 (n = 2, k = 0) and Remark (3).

Corollary 3. Let X be a Kähler manifold, M a compact orientable real submanifold of X. Suppose that M admits a foliation \mathcal{F} by p-dimensional comlex submanifolds of X. If there is an integer $r, 1 \leq r \leq p$, such that the 2r-th Betti number of M vanishes, then \mathcal{F} has no nontrivial foliation cycles.

Proof. We denote by $i: M \to X$ the inclusion map and by ω the Kähler form of X. Suppose that the 2r-th Betti number of M is zero for some $1 \le r \le p$. Then, $i^*\omega^r$ is exact, and hence so is $i^*\omega^p$. Now the conclusion follows from Theorem 1.

Evidently, statements similar to Theorem 1 hold also in symplectic geometry, whose proofs are the same as that of Theorem 1:

Theorem 2. Let X be a symplectic manifold, M a compact orientable submanifold of X. Suppose that M admits a foliation \mathcal{F} by 2p-dimensional symplectic submanifolds of X. If the p-th power of the symplectic form of X is exact when restricted to M, then \mathcal{F} has no nontrivial foliation cycles.

Theorem 3. Let X be a contact manifold endowed with a contact form η , M a compact orientable submanifold of X. Suppose that M admits a foliation \mathcal{F} by symplectic submanifolds of X (i.e $d\eta$ restricted to each leaf defines a symplectic structure). Then \mathcal{F} has no nontrivial foliation cycles.

References

- D. E. Barrett and T. Inaba: On the topology of compact three-dimensional Levi-flat hypersurfaces. J. Geometric Analysis, 2, 489-497 (1992).
- [2] M. A. Mishchenko: Three dimensional compact analytical manifolds embedded in CP^2 as Levi-flat hypersurfaces (preprint).
- [3] J. F. Plante: Foliations with measure preserving holonomy. Ann. of Math., 102, 327-361 (1975).
- [4] F. Sommer: Komplex-analytische Blätterung reeller Hyperflächen im Cⁿ. Math. Ann., 137, 392-411 (1959).
- [5] D. Sullivan: Cycles for the dynamical study of foliated manifolds and complex manifolds. Invent. Math., 36, 225-255 (1976).