Seminear-rings Characterized by their &-ideals. II

By Javed AHSAN

Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals, Saudi Arabia (Communicated by Shokichi IYANAGA, M. J. A., June 13, 1995)

This paper is a continuation of the author's earlier paper [1]. For undefined terms and notations used here we refer to [1]. In section 1 we describe some properties of the lattice of \mathcal{S} ideals of a distributively generated SI-seminearring (cf. [1]). In section 2 we define a topology in the space of all prime \mathcal{S} -ideals in a distributively generated SI-seminear-ring, and show that the subset consisting of all minimal prime \mathcal{S} ideals forms a Hausdorff space. Below we announce our results, whose details will appear elsewhere. Only some indications of proof will be given to Theorems 3, 4.

1. Distributively generated SI-seminearrings. Throughout this section R will denote a d.g. seminear-ring with an absorbing zero as defined in [1]. As remarked in [1], the product ABof \mathscr{S} -ideals A and B of R is an \mathscr{S} -ideal. Moreover, for each family of \mathscr{S} -ideals $\{A_i : i \in I\}$ of R, the sum $\sum_{i \in I} A_i$ as defined in [1], is the unique minimal member of the family of all \mathscr{S} -ideals of R containing the \mathscr{S} -ideals $\{A_i : i \in I\}$; and $\bigcap_{i \in I} A_i$ is the unique maximal member of the family of all \mathscr{S} -ideals of R contained in the \mathscr{S} -ideals $\{A_i : i \in I\}$. Using these facts, we may state Propositions 2.2 and 2.3 given in [1] in the following forms.

Proposition 1. The following assertions are equivalent:

(1) R is SI.

(2) For each pair of \mathcal{S} -ideals A, B of $R, A \cap B = AB$.

(3) The set of S-ideals of R (ordered by inclusion) is a semilattice (\mathscr{L}_R , Λ) with $A\Lambda B = AB$ for each pair of S-ideals A, B of R.

Proposition 2. The following assertions are equivalent:

(1) R is SI.

(2) The set of all S-ideals of R (ordered by inclusion) forms a complete lattice \mathcal{L}_R under the sum and intersection of S-ideals with $I \cap J = IJ$ for each pair of S-ideals I, J of R.

We also have:

Proposition 3. The following assertions are equivalent:

(1) For each pair of \mathcal{S} -ideals A, B of $R, A \cap B = AB$.

(2) R is SI.

(3) For each pair of \mathcal{S} -ideals A, B of R, $B \cap A = AB$.

(4) For each pair of \mathscr{S} -ideals A, B of R, $A \cap (A^{-1}B) = A \cap B$ ($A^{-1}B = \{r \in R : ra \in B \text{ for all } a \in A\}$).

Next we show that the lattice \mathscr{L}_R described in Proposition 2, is a (complete) Brouwerian and hence distributive lattice. A lattice \mathscr{L} is called *Brouwerian* if for any $a, b \in \mathscr{L}$, the set of all $x \in$ L satisfying $a \wedge x \leq b$ contains a greatest element c, the *pseudo-complement* of a relative to b.

Proposition 4. If R is an SI-seminear-ring, then the lattice \mathcal{L}_R is distributive.

Analogous to the notion of prime ideals in near-ring theory ([2], p. 62), we call an \mathscr{S} -ideal P of a seminear-ring R prime if $IJ \subseteq P \Rightarrow I \subseteq P$ or $J \subseteq P$ holds for all \mathscr{S} -ideals I, J of R; P is called completely prime if for $a, b \in R, ab \in P$ $\Rightarrow a \in P$ or $b \in P$; P is minimal prime if P is a minimal element of the set of prime \mathcal{S} -ideals of R. An \mathscr{S} -ideal K of R is semiprime if for all \mathscr{S} -ideals I of R, $I^2 \subseteq K \Rightarrow I \subseteq K$; K is completely semiprime if for $a \in R$ and n a positive integer, $a^n \in K \Rightarrow a \in K$. Furthermore, an \mathscr{S} -ideal Q of a seminear-ring R is called *irreducible* (strongly irreducible) if $I \cap J = Q \Rightarrow I = Q$ or $J = Q(I \cap J \subseteq Q \Rightarrow I \subseteq Q \text{ or } J \subseteq Q)$ holds for all \mathscr{S} -ideals I, J or R. Thus any prime \mathscr{S} -ideal is strongly irreducible and any strongly irreducible \mathscr{S} -ideal is irreducible. The following proposition shows that the concepts of prime, irreducible and strongly irreducible &-ideals coincide for SI-seminear-rings.

Proposition 5. Let R be an SI-seminear-ring. Then the following assertions for an \mathscr{S} -ideal P of R are equivalent: (1) P is prime.

(2) P is irreducible.

An \mathscr{S} -ideal J of R is a *direct summand* of R if there exists an \mathscr{S} -ideal J' called a *cosummand* of J, such that J + J' = R and $J \cap J' = (0)$.

Proposition 6. Let R be an SI-seminear-ring. Then the set of direct summands of R forms a Boolean sublattice of \mathcal{L}_{R} .

The above proposition can be used to obtain the following characterization of distributively generated SI-seminear-rings.

Theorem 1. The following assertions are equivalent:

(1) R is SI.

(2) Each proper \mathscr{S} -ideal of R is the intersection of prime \mathscr{S} -ideals which contain it.

We now give an example of a class of regular seminear-rings, namely distributively generated regular seminear-rings which are neither (regular) near-rings nor (regular) semirings.

Example 1. Let R be a distributively generated regular zero symmetric (that is, having an absorbing zero) right near-ring (see [2], p. 407 for examples of such near-rings) and let D be the multiplicative subsemigroup of (R, \cdot) which generates (R, +). Furthermore, let (S, \cdot) be a regular semigroup and let $\phi: (S, \cdot) \to (R, \cdot)$ be the homomorphism defined by $\phi(s) = 0$, for all $s \in S$. Let $A = S \cup R$. On the set A. introduce the structure of a right seminear-ring according to the procedure described in ([1], Example 1). Then $(A, +, \cdot)$ is a regular seminear-ring. Now adjoin an element $\theta \notin A$ to A, such that $a + \theta =$ $\theta + a = a$ and $a\theta = \theta a = \theta$, for all $a \in A \cup$ $\{\theta\}$. Let $A' = A \cup \{\theta\}$. Then $(A', +, \cdot)$ is a regular seminear-ring with an absorbing zero θ . Let $D' = S \cup D \cup \{\theta\}$. It is easily verified that D' is a multiplicative subsemigroup of (A', \cdot) , consisting of left distributive elements, which generates (A', +). Hence A' is a d.g. regular (and hence SI seminear-ring with an absorbing zero.

2. Prime &-ideal spaces. Unless stated otherwise, R will denote a d.g. seminear-ring with an absorbing zero and a (multiplicative) identity, and P_R will denote the set of proper prime &-ideals of R. Further for any &-ideal Iof R, we define the sets $\Theta_I = \{J \in P_R : I \leq J\}$ and $T(P_R) = \{\Theta_I : I \text{ is an } \&$ -ideal of $R\}$.

Theorem 2. Let R be an SI-seminear-ring. The set $T(P_R)$ constitutes a topology on the set P_R and the assignment $I \mapsto \Theta_I$ is a lattice isomorphism between the lattice \mathcal{L}_R and the lattice of open subsets of P_R .

The space P_R constructed in the above theorem need not be Hausdorff as shown by the following example.

Example 2. Let $R = \{0, a, 1\}$ with the following multiplication tables

+	0	a	1				1
0	0	a	1		0		
a	a	a	a	a	0	a	a
1	1	a	1	1	0	a	1

Note that R is a reduced regular d.g. seminearring with an absorbing zero; $\mathcal{L}_R = \{\{0\}, \{0, a\}, \{0, a, 1\}\}$ and $P_R = \{\{0\}, \{0, a\}\}$. The space of prime \mathscr{S} -ideals of R is clearly not Hausdorff.

Remark. If R is a regular near-ring with no nonzero nilpotent elements, then every Rsubgroup of R is a (two-sided near-ring) ideal, all idempotents are central and every prime ideal is a minimal prime ideal (see [2], 9.158, 9.159, 9.163). The above example shows that unlike the situation in near-rings, prime ideals of a seminear-ring need not be minimal prime for regular seminear-rings with no nonzero nilpotent elements.

Next we shall prove that if R is a regular seminear-ring with central idempotents, then the subspace P_{OR} of P_R consisting of minimal prime \mathscr{S} -ideals is Hausdorff. For this purpose we need the following lemmas.

Lemma 1. Let K be a completely semiprime \mathcal{S} -ideal of a (not necessarily d.g.) seminear-ring R. Then each of the following is true:

(i) If $ab \in K$ $(a, b \in R)$, then $ba \in K$.

(ii) If $ab \in K$ and $x \in R$, then $axb \in K$.

(iii) If $ab^n \in K$ (*n* is a positive integer), then $ab \in K$.

(iv) If $abc \in K$ $(a, b, c \in R)$ then $acb \in K$, and more generally, if $a_1a_2 \ldots a_n \in K(a_i \in R, i = 1, 2, \ldots, n)$ then $a_{i_1}a_{i_2} \ldots a_{i_n} \in K$ where i_1 , i_2, \ldots, i_n is any permutation of $1, 2, \ldots, n$.

Lemma 2. Let R be a (not necessarily d.g.) reduced seminear-ring. If $a^n y = 0$ for some positive integer n and a, $y \in R$, then ay = 0.

Definition 1. A subset M of a seminear-ring R is called an m-system if for $a, b \in M$, there exists some $x \in R$ such that $axb \in M$.

Lemma 3. Let R be a reduced seminear-ring

No. 6]

and let M be an m-system of R. If M does not intersect the completely semiprime \mathcal{S} -ideal K, then there exists an \mathcal{S} -ideal P which is maximal in the set of those completely semiprime \mathcal{S} -ideals which contain K and do not intersect M. Any such \mathcal{S} -ideal P is completely prime.

Lemma 4. Let R be a regular seminear-ring with central idempotents. If P is a prime \mathscr{S} -ideal of R, then $O_P = \{r \in R : ra = 0 \text{ for some } a \notin P\}$ is an \mathscr{S} -ideal of R and $O_P \subseteq P$.

The following theorem gives a useful characterization of minimal prime &-ideals of regular seminear-rings with central idempotents.

Theorem 3. Let R be a regular seminear-ring with central idempotents. A prime \mathscr{S} -ideal P is a minimal prime \mathscr{S} -ideal if and only if $P = O_P$.

Sketch of proof. If $P \neq O_P$, there exists $a \in P \setminus O_P$ by Lemma 4 and $M = R \setminus P$ is an *m*-system. Put now

 $K = \{a^{i_0}x_0a^{i_1}x_1\cdots a^{i_n}x_na^{i_{n+1}}: n \in \mathbb{N} \cup \{0\}, i_0, i_{n+1} \in \mathbb{N} \cup \{0\}, i_1, \ldots, i_n \in \mathbb{N}, x_0, \ldots, x_n \in M\}$ (where $a^0 = 1$). Then $K \supseteq M$, $0 \notin K$ and K is an *m*-system. $O_P \cap K = \phi$ and O_P is completely semiprime. Lemma 3 implies that there exists a completely prime \mathscr{S} -ideal A such that $A \cap K = \phi$. As $A \subseteq P$ and $A \neq P$, P is not a

minimal prime &-ideal. The converse is clear. 🗌

As an application of the above theorem, we can prove.

Theorem 4. Let R be a regular seminear-ring with central idempotents. Then the subspace P_{OR} is Hausdorff.

Sketch of proof. Let $P_1, P_2 \in P_{OR}, P_1 \neq P_2$. Then there exists $x \in P_1 \setminus P_2$. As $P_1 = O_{P_1}$ according to Theorem 3, we have $x \in O_{P_1}$, so there exists $t \notin P_1$ such that xt = 0. From Lemma 1(ii), we have xRt = (0) and so RxRt = (0). According to Proposition 2(i), Rx and Rt are \mathscr{S} -ideals of R, and from Proposition 1 $Rx \cap Rt = RxRt = (0)$. Thus $\Theta_{Rx} \cap \Theta_{Rt} = \Theta_{Rx\cap Rt} = \Theta_{(0)} = \phi$. As $P_1 \in \Theta_{Rt}, P_2 \in \Theta_{Rx}, P_{OR}$ is Hausdorff.

Acknowledgment. The author wishes to express his appreciation to the referee for his most valuable comments.

References

- [1] J. Ahsan: Seminear-rings characterized by their &-ideals. I. Proc. Japan Acad., 71A, 101-103 (1995).
- [2] G. Pilz: Near-rings. North Holland Publ. Comp. (1983).