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Introduction. Let X be a left homogeneous Let k be a field of characteristic zero and
space of a connected linear algebraic group G. a fixed algebraic closure of k. First, we assume
Suppose that G, X and the action are defined that G is reductive. Let Gss be the derived group
over Q, the field of rational numbers, and that X of G and G sc

be the universal /c-covering of G ss

has a Q-rational point x. We then identify X [9], Appendix I). Consider the composition
with G /H, where H is the stabilizer of a. p" G-- Gss G.

After the works of Siegel [13] and Weft [14], Take a maximal torus T in G and put T
-1Ono [10] investigated a mean value theorem for p (T). We then define

the adele space attached to a uniform and special 7rl(G T)"= X.(T)/p.X.(TSC),
homogeneous space X G/H, introducing the where X.(S) denotes the group of one-parameter
Tamagawa number v(G, X). Here, X is said to subgroups of a torus S. If T’ is another maximal
be special if G and H are connected linear torus in G, there is g G(Ic)so that T’:
Q-groups without tori parts in their Levi- gTg-1= Int(g)(T). Then, Int(g) induces the
Chevalley decompositions, isomorphism g. 7c1(G, T) n"I(G, T’) which

In [8], using Kottwitz’s fundamental theorem does not depend on the choice of g. The Galois
on the Tamagawa number [6], we showed that group Gal(k/I) acts on zrl(G, T) in the follow-
any special homogeneous space is uniform, and ing way. For (r Gal(k/k), there is
gave a formula expressing v(G X)in terms of G(/) so that T go Tg. Then, (r acts on
the fundamental groups of G and H.

The purpose of this paper is to give a gener-
alization of our results for special homogeneous
spaces to those for a wider class of homogeneous
spaces allowing G and H to have Q-anisotropic
tori in their Levi-Chevalley decompositions.
Since a reductive group does not have a univer-
sal covering in general, we use Borovoi’s algeb-
raic fundamental group to describe our results.
Also, we use his theory on abelian Galois coho-
mology which is a machinery to study Galois
cohomology of connected linear algebraic groups
in a functorial way ([1], [2], [3] and Appendix B
to [71).

am grateful to Mikhail V. Borovoi for use-
ful comments on the earlier version of this paper.
also thank Takao Watanabe for the correspond-

ence on [8].
1. Borovoi’s fundamental group and abelian

Galois eohomology. In this section, we introduce
Borovoi’s algebraic fundamental group and abe-
lian Galois cohomology which we need later to
describe our results. For these matters, we refer
to [1], [2], [3], and also Appendix B to [7].

7t’l(G T) as the composition
o,,

or)
(gr),

zr(G, T)-- zc(G, T -- ZCl(G, T).
We see that the above isomorphism g. is Gal(//
k)-equivariant. So, we simply write zrl(G)for
this Galois module. For a connected linear
/c-group G, we set rc(G) "= TI(G/GU), where
Gu

is the unipotent radical of G, and call it Boro-
voi’s fundamental group of G. Then, 7c(’)is an
exact functor from the category of connected
linear /c-groups to Gal(/c//c)-modules, finitely
generated over Z. One sees that an inner twisting
G-- G’ induces the isomorphism 7cI(G)
7c1(G’), and that if /c c C, zoo(G) is canonically
isomorphic to the topological fundamental group
of the complex Lie group G(C) as abelian
groups.

Next, we define the abelian Galois cohomolo-
gy groups of a connected reductive group G by

H2b (Ic, G) "= H (I, Tsc -- 73 (i >- 1),
where H means the Galois hypercohomology of
the complex

0-- Tsc--- T--O,
where Tsc

and T sit in degree 1 and 0, respec-
tively.
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Noting that (X, (Tso) -- X, (T)) --, rl(G) is a
short torsion free resolution of zrl(G)and that
S(/) X,(S) @/ for a k-torus S, we can see
that H,,(k, G) depends only on the Galois mod-
ule zcl(G). For a connected k-group G, we set

H(k, G) H2 (k, G / G").
On the other hand, for a connected reductive

group O, we observe that p" Gsc--* G is a cros-
sed module of algebraic groups over k and so we
can also define, in terms of cocycles, the hyperco-
homology

H (k, Gs --" G)
for i- 1,0,1, in a functorial way. Then, using
the morphism (1 G) (Gs--- G) and the
quasi-isomorphism ( Ts -- T) (G sc ---, G) of
crossed modules, we define the abelianization
maps

ab g (k, G) ---, H(k, G)
for i 0,1 (For ab, see [21). For a connected
k-group G, the abelianization maps are defined
by the composition
H (k, G) --* H (k G / G)--’ H’ (k, G / G)

U2o(k, G).
Finally, we remark that if G is semisimple,

7rl(G) Ker’(D) (- 1) (Tate twist), H2b(k, G)
Hi+i(k, Kerp) and ab (i 0,1) are connecting
homomorphisms oattached to the exact sequence, 1
--, Kerp---, Gs--- G 1.

2. Global and local classes. Let X be a left
homogeneous space over Q of a connected linear
Q-group G, and H the stabilizer of a Q-rational
point x of X. We define two equivalence relation
on the set X(Q). Let y, z be in X(Q). We say
that y is globally equivalent to z, written y z,
if there is g G(Q)so that z gy, and y is
locally equivalent to z if there is gA G(A) so
that z gAY in X(A), where A denotes the adele
ring of Q. Thus, the local class 0x containing x is
(A)x X(Q).

For a connected linear Q-group G, we define
Kerl(Q, G)to be the kernel of the localization
map

HI(Q, G) --" H H(Qv, G),

where y runs over all places of Q, and Q is the
completion of Q at y. Similarly, we define

Keri (Q, G) "= Ser(H(Q, G) --, II H,(Q, G)).

The following theorem, due to Borovoi, is a
natural generalization of [12], Theorem 4.3.

Theorem 2.1. ([3]) The abelianization map

abl" H1 (Q, G) -- Slab (Q, G) induces a bijection

of Ker(Q, G) onto the finite abelian group
Kerla(Q, G), which is functorial in G.

In particular, Keri(Q, G) depends only on the
Galois module 7r ( G)

Combining Theorem 2.1 with Lemma 2.1 of
[8], we have

Theorem 2.2. Notation being as above, we

have a bi]ection
Ox/ Ker (Kero(Q, H) Ker,(Q, G)).

In particular, the cardinality of the set Ox/ does
not depend on x X(Q).

We write h(G, X) for the cardinality of Ox/
,x X(Q).

3. Tamagawa number and mean value prop-
erty. Let G, H and X be as in Section 2.
Assume further that G, H are unimodular con-
nected Q-groups. Then, we have invariant gauge

H
forms co6, co on G, H and G-invariant gauge

x
form co on X so that they match together algeb-

G X H
raically, co co co ([15], 2.4). For each place v
of Q, these gauge forms induce the local mea-

G H X
sures co,, co, and coy on G(Q,),H(Q) and
X(Q,), respectively, which match together topolo-

G
gically ([15], 2.4). The Tamagawa measure coA on
G(A) is defined by

G -1 G
WA pv II L(1, X (G))w,

where Lv(s, X*(G) is the y-factor of the Artin
L-function L(s, X*(G))attached to the repre-
sentation of Gal(I/Q) on the module X*(G) of
rational characters of G, Pa lims-. (s 1)
L(s, X* (G) ),
rv is the rank of the submodule X*(G)Q consist-
ing of Q-rational characters of G. ([15], Appen-
dix II). Denoting G(A) the subgroup of all g
G(A) such that the idele norm of x(g) is 1 for
all Q-rational character X of G, we define the
Tamagawa number z’(G)to be the volume of
G(A) 1/G(Q) with respect to the Tamagawa mea-

G X
sure coA. We define the Tamagawa measure coA
on X(A) by

x -lii x
coA fOx /’ vcov

where Px Pa/PH, 2- L(1, X*(G))/L(1,
X*(H) ).

XThen, we see that the measures co, co and coA
match together topologically.

Here, we recall the fundamental theorem on
the Tamagawa number of an algebraic group in
terms of Borovoi’s fundamental group.
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Theorem 3.1. ([6], [5]) The Tamagawa num-
ber v(G) of a unimodular connected linear Q-group
G is given by

v(G)
(7Cl (e) Gal<O/Q)) trs]
[Ker (Q, G)]

where (7Cl(G)GalO/Q))tors means the torsion part of
the coinvariant quotient of zoo(G) under Gal(k/k),
and [*] means the cardinality of a set *.

In particular, v(G) does not change under an
inner twisting.

Now, throughout the following, we assume
further that G and H have no non-trivial
Q-rational characters and X is a quasi-affine
Q-variety. (Note that X is quasi-projective if no
condition is imposed on G, H, and X becomes
affine if H is reductive). Hence, G(A) G(A) 1,
H(A) H(A) and X(Q) is discrete in X(A)

Since G(A)X(Q) is open and closed in
X(A), the Tamagawa measure co induces a mea-

X
sure, written also oA, on this subset. Let
L(G(A)X(Q)) be the set of all compactly-
supported continuous functions on G(A)X(Q).

Firstly, we have the following theorem for
the uniformity of (G, X).

Theorem 3.2. Notation being as above, we
have an equality"

h(G, X) v(H) f(XA)O0A
(A)X(Q)

N f(gAY))
(A)/GQ)

for all f L(G(A)X(Q)).
Proof We have only to repeat Ono’s argu-

ment in Lemma 8.3 of [10], using Theorems 2.2
and 3.1, since stabilizers of x X(Q) are inner
forms each other and so their fundamental
groups are Gal (Q / Q) -isomorphic. []

Definition 3.3. We call z’(G, X) z-(G)/
h (G, X) z’(H) the Tamagawa number of a
homogeneous space (G, X) and say that (G, X)
has the mean value property if z-(G, X) 1, name-
ly, the following equality holds.

X
f(XA) O0A z-(G)

(A)X(Q)

( N f(gAy))
(A)/G(Q)

for all f L(G(A)X(Q)).
Theorem 3.4. If Kerl(Q, G)= 1, then we

have
[L" (G) Gal(/)]r(G, X) [TL.I(H)GaI(O/Q>

Proof By Theorems 2.1, 2.2 and 3.1, we
have only to show that zl (H) Gal(0/Q) and

7c(G)Gal<O/Q) are finite. The finiteness of
rl(H)G.,</,, is reduced to that of 7(Htr) Gal(

X /Htrx
/q) .[. )Gal(0/Q), where Htr

is the biggest
quotient torus of H. The latter follows from the
assumption that H has no non-trivial Q-rational
characters. The finiteness of r(G)Gal<0/Q) follows
in the same way. [---]

The following theorem is a generalization

and refinement of Ono’s mean value theorem
([ 10 ], Theorem 9.1).

Theorem 3.5. If the first two homotopy groups
of the complex manifold X(C) vanish, (G, X) has
the mean value property.

Proof. By the assumption and the homotopy
exact sequence attached to the fibration

1 -- H(C) -- G(C) X(C) -- 1,
we have a Gal(Q/Q)-isomorphism

7"I(H) 7i"l(a).
Hence, our assertion follows from Theorems 2.1,
2.2 and 3.1. [--]

4. Examples. Here, we give two examples
where the homogeneous spaces are not special in
the sense of Ono [10].

4.1. (Hopf homogeneous space). Let K be a

quadratic field over Q. Let RK/Q(Gm) be the
Weil restriction of the multiplicative group Gm
from K to Q ([15], 1.3). Let N’RK/Q(Gm)--
Gm be the norm map attached to K/Q. For x
RK/Q(Gm), define 2 RK/Q(Gm) by x,-
N(x)

the special unitary group ("3-sphere") attached
Sto K/Q. Denoting by the "2-sphere

{(z, w) Gm RK/Q(Gm) z2 + N(w) 1},
we have a Hopf map (cf. [1 1], Chap. 5)

G_... S ( x y) (N(x) N(y) 2xy)

which induces a bijection as we can show easily,
G/H’ S2,

where H=
0

IN(t) 1, which is a

-anisotropic torus.
In view of this bijection, we would like to

call X /H the Hopf homogeneous space
attached to K/Q. For its Tamagawa number, by
Theorem :3.4, we have

Z-(G, X) [’1 (/-/) GaI(/Q)]-1
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[H(Q, Xg(H))] -1"-- 1/2.

tn-14.2 ([4]. 6.6) Let f: t"+ a q-

-I-an : Z[t] be an irreducible polynomial. The
group G SLn acts on X- {x M, ldet(tI,-

-1x) f(t) } transitively by (g, x) g xg. The
stabilizer H of the Q-rational point

0 0 0 an
1 0 0 an_

x: 0 1 0

0 0 0 1 --is the Q-anisotropic torus Ker(N’RK/Q(Gm) --Gm), where K Q(c), f(a)- 0, and N is the
norm map attached to K Q.

Then, by Theorem 3.4 and the claim 6.6.1 of
[4] which computes 7rI(H)GaI(0 /Q) H-I(L/Q,
X,(H)), if L is the Galois closure of K/Q, we
have
v(G, X) [Coker(Gal(L/K)ab-- Gal(L/Q)a-) ]-1,
where ab means the abelianization.

For example, if Gal(L/Q) is the symmetric
group Sn(n >-3), (G, X)has the mean value
property.

I21

I3!
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