On the \mathbf{Z}_{3}-extension of a certain cubic cyclic field

By Keiichi Komatsu
Department of Information and Computer Science, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-0072
(Communicated by Shokichi Iyanaga, m. J. A., Dec. 14, 1998)

In our previous paper [2], we gave the following Theorem for vanishing of Iwasawa invariants of a cyclic extension of odd prime degree over the rational number field \boldsymbol{Q}.

Theorem A ([2, Cor. 3.6.]). Let l be an odd prime number, k a cyclic extension of degree l over $\boldsymbol{Q}, \boldsymbol{Q}_{\infty}$ the cyclotomic \boldsymbol{Z}_{l}-extension of \boldsymbol{Q} and $k_{\infty}=$ $k \boldsymbol{Q}_{\infty}$ the composite field of k and \boldsymbol{Q}_{∞}. Then the following are equivalent:
(1) The Iwasawa λ-invariant $\lambda_{l}\left(k_{\infty} / k\right)$ of k_{∞} over k is zero.
(2) For any prime ideal \mathfrak{p} of k_{∞} which is prime to l and ramified in k_{∞} over \boldsymbol{Q}_{∞}, the order of the ideal class of \mathfrak{p} is prime to l.

Moreover, using Theorem A, we gave some examples of vanishing of $\lambda\left(k_{\infty} / k\right)$, in [2]. More precisely, let \boldsymbol{Q}_{1} be the initial layer of the cyclotomic \boldsymbol{Z}_{3}-extension \boldsymbol{Q}_{∞} of \boldsymbol{Q}, k a cubic cyclic extension over \boldsymbol{Q} with prime conductor p such that $p \equiv 1(\bmod 9), k_{1}=k \boldsymbol{Q}_{1}, E_{Q_{1}}\left(\operatorname{resp} . E_{k_{1}}\right)$ the unit group of $\boldsymbol{Q}_{1}\left(\right.$ resp. $\left.k_{1}\right)$ and $N_{k_{1} / \boldsymbol{Q}_{1}}$ the norm k_{1} over \boldsymbol{Q}_{1}. In [2, Example 4.1], we treated the case $\left(E_{Q_{1}}: N_{k_{1} / Q_{1}}\left(E_{k_{1}}\right)\right)=9$ and $p \not \equiv 1(\bmod$ 27), which implies that the prime ideals of k_{1} lying above p are principal by genus formula. In this paper, we treat the case $p=73$, which could not be treated in [2]. We note that if $p=73$, then $\left(E_{Q_{1}}: N_{k_{1} / Q_{1}}\left(E_{k_{1}}\right)\right)=3$ (cf. [2, Example 4.2]).

The main purpose of this paper is to prove the following theorem:

Theorem. Let $\zeta_{73}=e^{\frac{2 \pi i}{73}}, k$ the unique subfield of $\boldsymbol{Q}\left(\zeta_{73}\right)$ of degree 3 over \boldsymbol{Q} and k_{∞} the cyclotomic \boldsymbol{Z}_{3}-extension of k. Then the λ-invariant $\lambda_{3}\left(k_{\infty} / k\right)$ of k_{∞} over k is zero.

The Theorem will be proved by using Fukuda's method (cf. [1]). We note that Leopoldt's conjecture is valid for the above k (cf. [4, p. 71]) and k is totally real. Now we explain notations.

We denote by \boldsymbol{Z} the rational integer ring. We put $\zeta_{n}=e^{\frac{2 \pi i}{n}}$ for a positive integer n. Let F be a number field. We denote by O_{F} the integer
ring of F. For an integral ideal \mathfrak{a} of F, we denote by $C l(\mathfrak{a})$ the ideal class of $\mathfrak{a}, O_{F} / \mathfrak{a}$ the factor ring of O_{F} over \mathfrak{a} and $\left(O_{F} / \mathfrak{a}\right)^{\times}$the set of invertible elements of O_{F} / \mathfrak{a}. For a Galois extension L of F, we denote by $G(L / F)$ the Galois group of L over F. Let G be a group. For elements g_{1}, g_{2}, \ldots, g_{r} of G, we denote by $\left\langle g_{1}, g_{2}, \ldots, g_{r}\right\rangle$ the subgroup of G generated by $g_{1}, g_{2}, \ldots, g_{r}$.

In order to prove our Theorem, we shall use the following Lemma:

Lemma 1 (cf. [3, Cor. of Prop. 1]). Let F be a totally real number field for which Leopoldt's conjecture is valid. Let A_{0} be the l-sylow subgroup of the ideal class group of F and a a product of primes of F lying above l such that $C l(\mathfrak{a}) \in A_{0}$. Then \mathfrak{a} becomes principal in the n-th layer F_{n} of F_{∞} over F for sufficiently large n.

Let \boldsymbol{Q}_{∞} be the cyclotomic \boldsymbol{Z}_{3}-extension of \boldsymbol{Q} and \boldsymbol{Q}_{n} the n-th layer of \boldsymbol{Q}_{∞} over \boldsymbol{Q} for a nonnegative integer n. We let $k_{n}=k \boldsymbol{Q}_{n}$ and A_{n} the 3 -sylow subgroup of the ideal class group of k_{n}. We put $\theta=\zeta_{9}+\zeta_{9}^{-1}=2 \cos \frac{2 \pi}{9}$. Then the roots of the equation $x^{3}-3 x+1=0$ are θ, θ^{2} $-2=\zeta_{9}^{7}+\zeta_{9}^{-7}$ and $-\theta^{2}-\theta+2=\zeta_{9}^{4}+\zeta_{9}^{-4}$. We note $\boldsymbol{Q}_{1}=\boldsymbol{Q}(\theta)$ and $x^{3}-3 x+1 \equiv(x+$ $34)(x+14)(x+25)(\bmod 73)$. Let \mathfrak{p}_{1} be the ideal $(\theta+34,73)$ of $O_{Q_{1}}$ generated by $\theta+34$, 73. Since $N_{Q_{1} / Q}\left(\theta^{2}+6 \theta-3\right)=\left(\theta^{2}+6 \theta-3\right)$ $\left(5 \theta^{2}-\theta-11\right)\left(-6 \theta^{2}-5 \theta+11\right)=-73$ and since $\theta^{2}+6 \theta-3 \equiv(\theta+34)(\theta-28)(\bmod 73)$, we have $\mathfrak{p}_{1}=\left(\theta^{2}+6 \theta-3\right)$. In a similar way, we have $(\theta+14,73)=\left(5 \theta^{2}-\theta-11\right)$ and $(\theta$ $+25,73)=\left(-6 \theta^{2}-5 \theta+11\right)$. We put $\mathfrak{p}_{2}=$ $\left(5 \theta^{2}-\theta-11\right)$ and $\mathfrak{p}_{3}=\left(-6 \theta^{2}-5 \theta+11\right)$. Note that $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \mathfrak{p}_{3}$ are the distinct prime ideals of \boldsymbol{Q}_{1} lying above 73 and $\left(O_{Q_{1}} / \mathfrak{p}_{i}\right)^{\times} \cong(\boldsymbol{Z} / 73 \boldsymbol{Z})^{\times}$.

We put $P_{\mathfrak{m}}=\left\{a \in \boldsymbol{Q}_{1} ; a\right.$ is prime to $\left.\mathfrak{m}\right\}$ and $S \mathfrak{m}=\{a \in P \mathfrak{m} ; a \equiv 1(\bmod \mathfrak{m})\}$ for an ideal \mathfrak{m} of \boldsymbol{Q}_{1}. Now, we define a surjective homomorphism φ of P_{73} / S_{73} to an abelian group $V=$
$\boldsymbol{Z} / 3 \boldsymbol{Z} \oplus \boldsymbol{Z} / 3 \boldsymbol{Z} \oplus \boldsymbol{Z} / 3 \boldsymbol{Z}$ as follows :
Since $5 \bmod 73$ is a generator of a cyclic group $(\boldsymbol{Z} / 73 \boldsymbol{Z})^{\times}$, there exists an integer e_{a} for any element $a \bmod 73 \in(\boldsymbol{Z} / 73 \boldsymbol{Z})^{\times}$such that $(5 \bmod 73)^{e_{a}}=a \bmod 73$. Hence we can define asurjective homomorphism \mathfrak{l} of $(\boldsymbol{Z} / 73 \boldsymbol{Z})^{\times}$to $\boldsymbol{Z} / 3 \boldsymbol{Z}$ defined by $\mathfrak{l}(a \bmod 73)=e_{a} \bmod 3$. Then we can define the following surjective homomorphism φ of $P_{73} / S_{73}\left(\cong\left(O_{Q_{1}} / \mathfrak{p}_{1}\right)^{\times} \times\left(O_{Q_{1}} / \mathfrak{p}_{2}\right)^{\times}\right.$ $\left.\times\left(O_{Q_{1}} / \mathfrak{p}_{3}\right)^{\times}\right)$to V by $\varphi(f(\theta))=(\mathfrak{l}(f(-34)$ $\bmod 73), \mathfrak{l}(f(-14) \bmod 73), \mathfrak{l}(f(-25) \bmod 73))$, where $f(\theta)$ is a polynomial of θ with rational integral coefficients and $f(\theta) \in P_{73}$.

Now, let K be the class field of \boldsymbol{Q}_{1} corresponding to the subgroup $P_{73}^{3} E_{Q_{1}} S_{73}$ of P_{73}, where $P_{73}^{3}=\left\{\alpha^{3} ; \alpha \in P_{73}\right\}$. Then, since the class number of \boldsymbol{Q}_{1} is one, we have the isomorphism
$\psi: P_{73} / P_{73}^{3} E_{Q_{1}} S_{73} \ni \alpha P_{73}^{3} E_{Q_{1}} S_{73} \mapsto\left(\frac{K / \boldsymbol{Q}_{1}}{(\alpha)}\right) \in G\left(K / \boldsymbol{Q}_{1}\right)$ through Artin map.

Since $E_{Q_{1}}$ is the cyclotomic units of \boldsymbol{Q}_{1} (cf. [4, p. 145]), $E_{Q_{1}}$ is generated by $\left\{-1, \zeta_{9}^{-\frac{1}{2}}\right.$ $\frac{1-\zeta_{9}^{2}}{1-\zeta_{9}}=-\theta^{2}-\theta+2, \zeta_{9}^{-\frac{3}{2}} \frac{1-\zeta_{9}^{4}}{1-\zeta_{9}}=-\theta^{2}$ $-\theta+1\}$.

Now, for a simplicity, we denote by $(\bar{a}, \bar{b}, \bar{c})$ an element $(a \bmod 3, b \bmod 3, c \bmod 3) \in V$. Then we have $\varphi\left(\left(-\theta^{2}-\theta+2\right) \bmod 73\right)=$ $(\overline{-1}, \overline{-1}, \overline{-1})$ and $\varphi\left(\left(-\theta^{2}-\theta+1\right)\right)=(\overline{1}$, $\overline{1}, \overline{1})$, which gives the isomorphism

$$
\tilde{\varphi}: P_{73} / P_{73}^{3} E_{Q_{1}} S_{73} \cong V /\langle(\overline{-1}, \overline{-1}, \overline{-1})\rangle
$$

induced by φ.
Since $N_{Q_{1} / Q}(2-\theta)=3$ and $3 \bmod 73$ is a third power residue $\bmod 73$, the field $k_{1}=k \boldsymbol{Q}_{1}$ is the class field of \boldsymbol{Q}_{1} corresponding to $\langle 2-\underline{\theta}\rangle$ $P_{73}^{3} E_{Q_{1}} S_{73}$. This implies $\tilde{\varphi} \psi^{-1}\left(G\left(K / k_{1}\right)\right)=\langle(\overline{1}$, $\overline{-1}, \overline{0}),(\overline{1}, \overline{1}, \overline{1})\rangle /(\overline{1}, \overline{1}, \overline{1})\rangle$ by $\varphi(2-\theta)=$ $(\overline{1}, \overline{-1}, \overline{0})$, which means $G\left(K / k_{1}\right)=$ $\left\langle\left(\frac{K / \boldsymbol{Q}_{1}}{(2-\theta)}\right)\right\rangle$. We note that K is 3 -part of the genus field of k_{1} over \boldsymbol{Q}_{1} by class field theory, since $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \mathfrak{p}_{3}$ are the prime ideals of \boldsymbol{Q}_{1} which are ramified in k_{1} over \boldsymbol{Q}_{1}.

Lemma 2 (Ozaki). Let K^{\prime} be the 3-part of the Hilbert class field of k_{1} and $\mathfrak{\Omega}$ a prime ideal of k_{1} lying above 3. If $G\left(K^{\prime} / k_{1}\right)=\left\langle\left(\frac{K^{\prime} / k_{1}}{\mathfrak{L}}\right)\right\rangle$, then $\lambda_{3}\left(k_{\infty} / k\right)=0$.

Proof. Let \mathfrak{P}_{i} be the prime ideal of k_{1} lying above \mathfrak{p}_{i}. Since $\left(\frac{K^{\prime} / k_{1}}{\mathfrak{B}}\right)$ is a power of $\left(\frac{K^{\prime} / k_{1}}{\mathfrak{L}}\right)$, \mathfrak{B}_{i} becomes principal in k_{∞} by Lemma 1 . Moreover $\mathfrak{B}_{1}, \mathfrak{B}_{2}, \mathfrak{B}_{3}$ are the prime ideals of k_{∞} which are ramified in k_{∞} over \boldsymbol{Q}_{∞}, which shows $\lambda_{3}\left(k_{\infty} / k\right)$ $=0$ by Theorem A.

Since the ideal $(2-\theta)$ is the unique prime ideal of \boldsymbol{Q}_{1} lying above 3 , in order to prove our Theorem, it is sufficient to show $K=K^{\prime}$ because of $\left(\frac{K^{\prime} / k_{1}}{\mathfrak{L}}\right)=\left(\frac{K / k_{1}}{\mathfrak{L}}\right)=\left(\frac{K / \boldsymbol{Q}_{1}}{(2-\theta)}\right)$.

Let k^{\prime} be the class field of \boldsymbol{Q}_{1} corresponding to $P_{\mathfrak{p}_{2} \mathfrak{p}_{3}}^{3} E_{Q_{1}} S \mathfrak{p}_{2} \mathfrak{p}_{3}$. Then we have $\left.\left(\frac{K / k_{1}}{\mathfrak{P}_{1}}\right)\right|_{k^{\prime}}=$ $\left(\frac{k^{\prime} / \boldsymbol{Q}_{1}}{\mathfrak{p}_{1}}\right)$ and hence $\left(\frac{K / k_{1}}{\mathfrak{F}_{1}}\right)=\left(\frac{K / k_{1}}{(2-\theta)}\right)$ by $\mathfrak{l}\left(\left(\theta^{2}+6 \theta-3\right) \bmod \mathfrak{p}_{2}\right)=\overline{1}$ and $\mathfrak{l}\left(\left(\theta^{2}+6 \theta-\right.\right.$ 3) $\left.\bmod \mathfrak{p}_{3}\right)=\overline{-1}$. This implies $G\left(K / k_{1}\right)=$ $\left\langle\left(\frac{K / k_{1}}{\mathfrak{ß}_{1}}\right)\right\rangle$, which shows $K=K^{\prime}$ by genus theory (cf. [5, Lemma 2]).

References

[1] T. Fukuda: On a capitulation in the cyclotomic \boldsymbol{Z}_{p}-extension of cyclic extensions of \boldsymbol{Q} with degree l. Proc. Japan Acad., 73A, 108-110 (1997).
[2] T. Fukuda, K. Komatsu, M. Ozaki, and H. Taya: On Iwasawa λ_{p}-invariants of relative real cyclic extensions of degree p. Tokyo J. Math., 20, 475480 (1997).
[3] R. Greenberg: On the Iwasawa invariants of totally real number fields. Amer. J. Math., 98, 263-284 (1976).
$[4]$ L. C. Washington: Introduction to Cyclotomic Fields. Springer-Verlag, New York- HeidelbergBerlin (1997).
[5] O. Yahagi: Construction of number fields with prescribed l-class group. Tokyo J. Math., 1, 275283 (1978).

