On the Z_3 -extension of a certain cubic cyclic field

By Keiichi KOMATSU

Department of Information and Computer Science, School of Science and Engineering, Waseda University,

3-4-1 Okubo, Shinjuku-ku, Tokyo 169-0072

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 14, 1998)

In our previous paper [2], we gave the following Theorem for vanishing of Iwasawa invariants of a cyclic extension of odd prime degree over the rational number field Q.

Theorem A ([2, Cor. 3.6.]). Let l be an odd prime number, k a cyclic extension of degree l over Q, Q_{∞} the cyclotomic Z_{l} -extension of Q and $k_{\infty} = kQ_{\infty}$ the composite field of k and Q_{∞} . Then the following are equivalent:

(1) The Iwasawa λ -invariant $\lambda_1(k_{\infty}/k)$ of k_{∞} over k is zero.

(2) For any prime ideal \mathfrak{p} of k_{∞} which is prime to l and ramified in k_{∞} over \mathbf{Q}_{∞} , the order of the ideal class of \mathfrak{p} is prime to l.

Moreover, using Theorem A, we gave some examples of vanishing of $\lambda (k_{\infty}/k)$, in [2]. More precisely, let Q_1 be the initial layer of the cyclotomic \mathbb{Z}_3 -extension Q_{∞} of Q, k a cubic cyclic extension over Q with prime conductor p such that $p \equiv 1 \pmod{9}$, $k_1 = kQ_1$, E_{Q_1} (resp. E_{k_1}) the unit group of Q_1 (resp. k_1) and N_{k_1/Q_1} the norm k_1 over Q_1 . In [2, Example 4.1], we treated the case $(E_{Q_1}: N_{k_1/Q_1} (E_{k_1})) = 9$ and $p \neq 1 \pmod{27}$, which implies that the prime ideals of k_1 lying above p are principal by genus formula. In this paper, we treat the case p = 73, which could not be treated in [2]. We note that if p = 73, then $(E_{Q_1}: N_{k_1/Q_1}(E_{k_1})) = 3$ (cf. [2, Example 4.2]).

The main purpose of this paper is to prove the following theorem :

Theorem. Let $\zeta_{73} = e^{\frac{2\pi i}{73}}$, k the unique subfield of $Q(\zeta_{73})$ of degree 3 over Q and k_{∞} the cyclotomic Z_3 -extension of k. Then the λ -invariant $\lambda_3(k_{\infty}/k)$ of k_{∞} over k is zero.

The Theorem will be proved by using Fukuda's method (cf. [1]). We note that Leopoldt's conjecture is valid for the above k (cf. [4, p. 71]) and k is totally real. Now we explain notations.

We denote by Z the rational integer ring. We put $\zeta_n = e^{\frac{2\pi i}{n}}$ for a positive integer *n*. Let *F* be a number field. We denote by O_F the integer ring of F. For an integral ideal \mathfrak{a} of F, we denote by $Cl(\mathfrak{a})$ the ideal class of \mathfrak{a} , O_F/\mathfrak{a} the factor ring of O_F over \mathfrak{a} and $(O_F/\mathfrak{a})^{\times}$ the set of invertible elements of O_F/\mathfrak{a} . For a Galois extension L of F, we denote by G(L/F) the Galois group of Lover F. Let G be a group. For elements g_1, g_2, \ldots, g_r of G, we denote by $\langle g_1, g_2, \ldots, g_r \rangle$ the subgroup of G generated by g_1, g_2, \ldots, g_r .

In order to prove our Theorem, we shall use the following Lemma:

Lemma 1 (cf. [3, Cor. of Prop. 1]). Let F be a totally real number field for which Leopoldt's conjecture is valid. Let A_0 be the *l*-sylow subgroup of the ideal class group of F and \mathfrak{a} a product of primes of F lying above *l* such that $Cl(\mathfrak{a}) \in A_0$. Then \mathfrak{a} becomes principal in the *n*-th layer F_n of F_∞ over Ffor sufficiently large n.

Let Q_{∞} be the cyclotomic Z_3 -extension of Qand \boldsymbol{Q}_n the *n*-th layer of \boldsymbol{Q}_∞ over \boldsymbol{Q} for a nonnegative integer *n*. We let $k_n = kQ_n$ and A_n the 3-sylow subgroup of the ideal class group of k_n . We put $\theta = \zeta_9 + \zeta_9^{-1} = 2\cos\frac{2\pi}{9}$. Then the roots of the equation $x^3 - 3x + 1 = 0$ are θ , $\theta^2 - 2 = \zeta_9^7 + \zeta_9^{-7}$ and $-\theta^2 - \theta + 2 = \zeta_9^4 + \zeta_9^{-4}$. We note $Q_1 = Q(\theta)$ and $x^3 - 3x + 1 \equiv (x + \theta)$ 34) $(x + 14)(x + 25) \pmod{73}$. Let \mathfrak{p}_1 be the ideal (θ + 34, 73) of O_{Q_1} generated by θ + 34, 73. Since $N_{Q_1/Q} (\theta^2 + 6\theta - 3) = (\theta^2 + 6\theta - 3)$ $(5\theta^2 - \theta - 11) (-6\theta^2 - 5\theta + 11) = -73$ and since $\theta^2 + 6\theta - 3 \equiv (\theta + 34)(\theta - 28) \pmod{73}$, we have $\mathfrak{p}_1 = (\theta^2 + 6\theta - 3)$. In a similar way, we have $(\theta + 14, 73) = (5\theta^2 - \theta - 11)$ and $(\theta$ $(+25, 73) = (-6\theta^2 - 5\theta + 11)$. We put $\mathfrak{p}_2 =$ $(5\theta^2 - \theta - 11)$ and $p_3 = (-6\theta^2 - 5\theta + 11)$. Note that $\mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3$ are the distinct prime ideals of Q_1 lying above 73 and $(O_{Q_i}/\mathfrak{p}_i)^* \cong (\mathbb{Z}/73\mathbb{Z})^*$.

We put $P\mathfrak{m} = \{a \in Q_1; a \text{ is prime to } \mathfrak{m}\}$ and $S\mathfrak{m} = \{a \in P\mathfrak{m}; a \equiv 1 \pmod{\mathfrak{m}}\}$ for an ideal \mathfrak{m} of Q_1 . Now, we define a surjective homomorphism φ of P_{73}/S_{73} to an abelian group V = $Z/3Z \oplus Z/3Z \oplus Z/3Z$ as follows:

Since 5 mod 73 is a generator of a cyclic group $(\mathbb{Z}/73\mathbb{Z})^{\times}$, there exists an integer e_a for any element $a \mod 73 \in (\mathbb{Z}/73\mathbb{Z})^{\times}$ such that $(5 \mod 73)^{e_a} = a \mod 73$. Hence we can define asurjective homomorphism 1 of $(\mathbb{Z}/73\mathbb{Z})^{\times}$ to $\mathbb{Z}/3\mathbb{Z}$ defined by $\mathfrak{l}(a \mod 73) = e_a \mod 3$. Then we can define the following surjective homomorphism φ of $P_{73}/S_{73} \cong (O_{Q_1}/\mathfrak{p}_1)^{\times} \times (O_{Q_1}/\mathfrak{p}_2)^{\times} \times (O_{Q_1}/\mathfrak{p}_3)^{\times})$ to V by $\varphi(f(\theta)) = (\mathfrak{l}(f(-34) \mod 73), \mathfrak{l}(f(-14) \mod 73), \mathfrak{l}(f(-25) \mod 73)))$, where $f(\theta)$ is a polynomial of θ with rational integral coefficients and $f(\theta) \in P_{73}$.

Now, let *K* be the class field of Q_1 corresponding to the subgroup $P_{73}^3 E_{Q_1} S_{73}$ of P_{73} , where $P_{73}^3 = \{\alpha^3; \alpha \in P_{73}\}$. Then, since the class number of Q_1 is one, we have the isomorphism

$$\psi: P_{73}/P_{73}^{3}E_{q_{1}}S_{73} \ni \alpha P_{73}^{3}E_{q_{1}}S_{73} \mapsto \left(\frac{K/Q_{1}}{(\alpha)}\right) \in G(K/Q_{1})$$

through Artin map.

Since E_{Q_1} is the cyclotomic units of Q_1 (cf. [4, p. 145]), E_{Q_1} is generated by $\{-1, \zeta_9^{-\frac{1}{2}}, \frac{1-\zeta_9^2}{1-\zeta_9} = -\theta^2 - \theta + 2, \zeta_9^{-\frac{3}{2}} \frac{1-\zeta_9^4}{1-\zeta_9} = -\theta^2 - \theta + 1\}.$

Now, for a simplicity, we denote by $(\overline{a}, \overline{b}, \overline{c})$ an element $(a \mod 3, b \mod 3, c \mod 3) \in V$. Then we have $\varphi((-\theta^2 - \theta + 2) \mod 73) = (-1, -1, -1)$ and $\varphi((-\theta^2 - \theta + 1)) = (1, -1, -1)$, which gives the isomorphism

 $\tilde{\varphi}: P_{73}/P_{73}^{3}E_{Q_{1}}S_{73} \cong V/\langle \overline{(-1, -1, -1)} \rangle$ induced by φ .

Since $N_{Q_1/Q}(2-\theta) = 3$ and 3 mod 73 is a third power residue mod 73, the field $k_1 = kQ_1$ is the class field of Q_1 corresponding to $\langle 2-\theta \rangle$ $P_{73}^3 E_{Q_1} S_{73}$. This implies $\tilde{\varphi} \phi^{-1} (G(K/k_1)) = \langle (\bar{1}, \bar{1}, \bar{1}) \rangle / (\bar{1}, \bar{1}, \bar{1}) \rangle$ by $\varphi(2-\theta) = (\bar{1}, -\bar{1}, \bar{0})$, $(\bar{1}, \bar{1}, \bar{1}) \rangle / (\bar{1}, \bar{1}, \bar{1}) \rangle$ by $\varphi(2-\theta) = \langle (K/Q_1) \rangle$. We note that K is 3-part of the genus field of k_1 over Q_1 by class field theory, since $\mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3$ are the prime ideals of Q_1 which are ramified in k_1 over Q_1 . **Lemma 2** (Ozaki). Let K' be the 3-part of the Hilbert class field of k_1 and \mathfrak{L} a prime ideal of k_1 lying above 3. If $G(K'/k_1) = \langle \left(\frac{K'/k_1}{\mathfrak{L}}\right) \rangle$, then $\lambda_3(k_{\infty}/k) = 0$.

Proof. Let \mathfrak{P}_i be the prime ideal of k_1 lying above \mathfrak{p}_i . Since $\left(\frac{K'/k_1}{\mathfrak{P}}\right)$ is a power of $\left(\frac{K'/k_1}{\mathfrak{P}}\right)$, \mathfrak{P}_i becomes principal in k_∞ by Lemma 1. Moreover \mathfrak{P}_1 , \mathfrak{P}_2 , \mathfrak{P}_3 are the prime ideals of k_∞ which are ramified in k_∞ over \mathbf{Q}_∞ , which shows $\lambda_3(k_\infty/k)$ = 0 by Theorem A.

Since the ideal $(2 - \theta)$ is the unique prime ideal of Q_1 lying above 3, in order to prove our Theorem, it is sufficient to show K = K' because of $\left(\frac{K'/k_1}{\mathfrak{L}}\right) = \left(\frac{K/k_1}{\mathfrak{L}}\right) = \left(\frac{K/Q_1}{(2 - \theta)}\right)$. Let k' be the class field of Q_1 corresponding

to $P_{\mathfrak{p}_2\mathfrak{p}_3}^3 E_{q_1} S\mathfrak{p}_2\mathfrak{p}_3$. Then we have $\left(\frac{K/k_1}{\mathfrak{P}_1}\right)\Big|_{k'} = \left(\frac{k'/\mathbf{Q}_1}{\mathfrak{p}_1}\right)$ and hence $\left(\frac{K/k_1}{\mathfrak{P}_1}\right) = \left(\frac{K/k_1}{(2-\theta)}\right)$ by $\mathfrak{l}\left((\theta^2 + 6\theta - 3) \mod \mathfrak{p}_2\right) = \overline{1}$ and $\mathfrak{l}\left((\theta^2 + 6\theta - 3) \mod \mathfrak{p}_2\right) = \overline{1}$ and $\mathfrak{l}\left((\theta^2 + 6\theta - 3) \mod \mathfrak{p}_3\right) = -1$. This implies $G(K/k_1) = \langle\left(\frac{K/k_1}{\mathfrak{P}_1}\right)\rangle$, which shows K = K' by genus therem (of 15 Lemma 2).

theory (cf. [5, Lemma 2]).

References

- [1] T. Fukuda: On a capitulation in the cyclotomic Z_p -extension of cyclic extensions of Q with degree *l*. Proc. Japan Acad., 73A, 108-110 (1997).
- [2] T. Fukuda, K. Komatsu, M. Ozaki, and H. Taya: On Iwasawa λ_p -invariants of relative real cyclic extensions of degree p. Tokyo J. Math., **20**, 475– 480 (1997).
- [3] R. Greenberg: On the Iwasawa invariants of totally real number fields. Amer. J. Math., 98, 263-284 (1976).
- [4] L. C. Washington: Introduction to Cyclotomic Fields. Springer-Verlag, New York-Heidelberg-Berlin (1997).
- [5] O. Yahagi: Construction of number fields with prescribed *l*-class group. Tokyo J. Math., 1, 275-283 (1978).