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1. Introduction. Let f (a:) be a cubic
polynomial with rational integer coefficients,
which is monic and irreducible. Suppose that all
roots 0, 0’ and 0" of f(a) --0 are real, and put
K-Q (0). Denote by D the discriminant of
polynomial f(a:). Let o/ and E/ be the ring of in-
tegers and the group of units of K respectively.
Moreover we denote by E/ the subset of E/ con-
sisting of the units s with NIC/Qs 1. It is well
known by a theorem of Dirichlet [6] that there
exists a system of fundamental units {sl., sa} such
that

Ez {__+ 1} E/ and Ez (sl,
Our purpose is to determine totally real cubic
fields such that the system of fundamental units
can be given in the form {04- r, 04- s} for
some integers r, s. Note that we can reduce our
problem to the case that 0 is a unit in K (i.e., r-
0).

First, for the minimal polynomial f(a:) of 0
over Q, we can get the following"

Proposition 1. Suppose that s is a non-zero
integer and both 0 and 0 4-s are in E,. Then
there is an integer t such that

(a) if 0 and 0 4- s are in E;, then f(a)
x(x + s)(z + t) 1,

(b) if 0 and --0--s are in E/, then f(

It is easy to prove this proposition.
Conversely we should investigate whether

{0, 0 4- s} is a system of fundamental units. As
for (i), we can reduce to the case t--> 1, s _>
1 because of 0(0 + t) (0 + s) -. In this condi-

+
tion, Stender [:3] and Thomas [41 proved E/-
0, 0 4- s), but we will prove this in a different
way. As for (ii), there are only four cases s-

1, 2. The case (ii) s-- 1 was studied by
Watabe [5] completely.

Our main results are as follows"
Theorem 1 (Stender [31, Thomas [4]). In the

casef(x) x(x+ t)(z+s) l(s, t Z), if

D is positive, square free and t > 1, s > t + 1,
then E (0, 0 4- s) holds.

Theorem 2 (s 1). In the casef(:c)
z(:c 4- (t-- 1)x4- (-- t4-2)) l(t Z), if

Dy is positive and square free, then E/ (0,
0 4- 1) holds.

Theorem 3 (s 2). In the case f(:c) c
(za+ (t+2)x+ 2t-- 1) l(t Z), ifDz is
square free, then E (0, 0- 2) holds.

Theorem 4 (s 2). In the casef(:c)
x(x + (t-- 2)z-- 2t+ 1) l(t Z), if Dy
is positive, both of t 4- 1 and 4t 4- 8t- 23 are
square free and t 2 (rood3), then E/- (0,

0 4- 2) holds.
2. Preliminaries. We define a function S

from E, to Z by
1 2 s,,)a (s"S() --((s- s’) + (s’- + )

Moreover, define s/(K), and $1 (K) for t in
d(K) by

M(K) (e E;\(1)I S(z)is minimum),
+ n

$1(K) ( E\(q n Z) S(s) is minimum).
The following lemmas will be useful for the

proof of theorems.
Lemma 1 (Brunotte, Halter-Koch [2]). If 1

is in M (K) and sa is in $1(K), then (E; (,
sa))

_
4 holds.

Lemma 2 (Godwin [1]). For any t, , s in

E and integer m _> 2, we have
rn+l

S() < 9S("), S() < 9S(d), S() < 2

S(s182) < 3S(s)S(s2), 8(8-1) --< S(s) 2.
Lemma 3. In the conditions of Theorem 1,

it holds that
s(o(o + s)) <_ s(o) , s(o(o + s)) < s(o) .

Proof. We can easily prove Lemma 3 by
elementary calculation. [--]

Lemma 4. In the conditions of Theorem 1,
we have S(t) 12.

Proof. We have S() (t 4- s) a- 3st= ta
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ts + s and in the case t _> 1, s _> t
is positive and square free, then we have (t, s)

(i, 2), (i, 3), (2, 3), (3, 4).
3. Proofs of Theorems 1 and 2. In the con-

dition of Theorem 1, the case s t + 1 can be
reduced to the case t- 1. So we have only to
prove the case t--> 1, s _> t + 2.

For the proof of Theorem 1, we need some
lemmas. First we shall show the next lemma.

Lemma 5. In the conditions of Theorem 1,
we have 0 M(K).

Proof Since D is square free, we have
Z + Z0 + Z0 (Cohen [7]). For any u

E\{1} which is expressed in the form u- a
bO + cO2, a, b, c Z, (b, c) =/= (0, 0), we have

S(u) S(O)b + T(O)c + U(O)bc,
where 1

T(O)" --((02- 0’2) + (0,2- 0"2) + (0"2- 02) 2}
4- st 6t + s 6s,

U(O)" (0 0’) (0 0’) + (0’ 0") (0’ 0")
+ (0" O) (0" 0)
-2t + st + s2t- 2s + 9.

If c- 0, then S(u) S(O)b >- S(O). Next,
suppose Ic[- 1. Then we have

S(u) S(O) (t2- ts + s2)b + (- 2t + s +
s 2s + 9)b
+ (/4_ (s + 1)t + (S- 6)/+ (S4- S --6s)).
If t _> 2, s _> t + 2, then we can see the discrimi-
nant of the above polynomial in b is negative. So
we have S (u) > S (0). If t 1, s _> 3, we also
have S (u) -> S (0) because the minimum of
S (u) S (0) is 2s-- 6-> 0 when b- + s.
Finally, suppose Ic[--> 2. Then we have S(u)-

S(0) -> S(u) -S(0) and we can see the dis-

1
criminant of S(u) ---S(O)c, as a polynomial in

b, is negative. So we have S(u) > S(0). There-
fore we obtain 0 M(K). [--]

Next, we shall show the next lemma.
Lemma 6. In the conditions of Theorem 1,

we have 0 + s 30(K).
Proof Since S(O + s) S(0), its minimal-

ity is obvious.
Suppose 0 + s m Z. Since f(x)

515,2x + (t+ s) + tsx-- 1, iris easy to see m4=
0, __+ 1, 2,

___
3. Suppose m > 4. From Lemma

2, we have
3m+l 3m+l 3m+lS(O)m < 2

s(om)
2 S(O + s)

2 S(O).

Hence we have S (0)<
3m+l - % -2 --< 5. If m _< 4, again from Lemma 2, we simi-

larly get S(O) < 12. These contradict to Lemma
4. Thus we obtain 0 + s 30(K). [

Proof of Theorem 1. If we put Eo- (0, 0
+ s), from Lemma 1 we have

(E;" Eo) <_ 4.
First, we shall show that (E’Eo) is odd.

Suppose that (E" Eo) is even, then there exists

s E\ Eo such that
k

s 0 (O+s), k, l {0, 1}.
+

If (k, l) (0, 0), then s 1. As s EK,
we have s- 1. This is a contradiction. If (k, l)

(1, 0),then s 0. Since
s(o) < s(s) < 98(0),

we have S(O) < 9. This contradicts to Lemma 4.
If (k, l) (0, 1), then we obtain a contradiction
similarly. If (k, l) (1, 1), then s 0(0 + s).
So we have

S(s) < 9S(s) 9S(0(0 + s)) < 9S(0) 2.
Hence we obtain S(s) < 3S(0). But we can see

by elementary way that no unit s can satisfy the
following conditions simultaneously"

s 0(0+ s),
s(s) < 3s(o),

+sEK.
Finally we shall show that (E’Eo) ve 3. Sup-

+
pose that (EK’Eo) -3, then there exists s
E/\ Eo such that

k
e 0 (0+s), k, 1 (0, 1, 2}.

If (k, l) (0, 0), then s- 1. This is a con-
tradiction. If (k, l) (1, 0), then 0. Since

s(o) <_ s(s) < 9s(0),
we have S(0) < /-. In a similar way, if (k, l)

(0, 1), (1, 1), then it follows from Lemmas 2
and 3 that S(O) < /-, 9 respectively. These con-

tradict to Lemma 4. If (k, l) (2, 1), then s
02(0 + s). Since

S(s) < 9S(sa) -9S(0(0 + s)) < 9S(0) a,
we have S(s) < /-S(O). If (l, s) ve (2, 4), (3, 5),
(4, 6), (5, 7), (2, 5), we can see by elementary
way that no unit s can satisfy the following con-
ditions simultaneously"

0s (0+ s),
s(s) < /-gs(o),
s E.

Otherwise, we can improve S(s) < /-S(O), and
we can also see that there is no unit s satisfying
these improved condition.
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The cases (k, I) (2, 0), (0, 2), (1, 2),
and (2, 2 )are reduced to the cases (k, I)-
(1, 0), (0, 1), (2, 1) and (1, 1) respectively. This
completes the proof of Theorem 1. [-

Corollary 1. In the case f(x) x3-T- (tx
+ 1 )(sx+ 1 )(t< s, t:/: O, s :/: 0), if De is

+
positive and square free, then EK is generated by
two of the three units ---+ @, -+-t04- 1, 4-s/
1.

Proof of Corollary 1. This follows by the
1

variable transformation "- 4-- in Theorem
1.

Proof of Theorem 2. If we put s’-- 1, t"
t 4- 1 in Corollary 1, we obtain the polynomial

in Theorem 2. So we can get Theorem 2.
4. Proofs of Theorem 3 and 4. Proof of

Theorem 3. Since we can reduce the case t--< 0
to the case t > 1 and moreover the cases t-
1, 2, 3 do not satisfy the condition in Theorem 3,
we may consider the case t > 4. In this case, we
have

(1) S(O)- (t+2)2-3(2t-1)-t2-2t+7>15.
In the conditions in Theorem 3, we have

Z + Z0 + Z02 (Cohen [7]). 0 M (K) and
0--2 30(K)hold by the similar way to the
proof of Lemmas 5,6.
Let E0- (0, 0-- 2). From Lemma 1 we get

+(EK E0) -< 4.
We shall first show that (ET’Eo) is odd.

Suppose that (E" Eo) is even, then there exists
e ET\ E0 such that

k
s 0 (-- 0--2), k, l {0, 1}.

It follows by the same argument as in the
proof of Theorem 1 that (k, 1) :/: (0, 0), (1, 0)
and (0,1). If (k, l) (1, 1 ), then 0 (--

2) holds. Hence we have 4- 20+ 0.
Since 0 R, we have I- ta> 0. Thus we
obtain I1 < 1. Similarly, 1’[ < 1, ["[ < 1 hold.
These contradict to ’" 1.

We shall next show that (E," E0 )=# 3.
+Suppose that (EK Eo) 3, then there exists

E\ Eo such that
ks 0 (-- 0-- 2), k, l {0, 1, 2}.

In the cases (k, I) (0, 0), (1, 0) and
(0,1), we can obtain a contradiction by the simi-
lar way to the proof of Theorem 1. If (k, l)
(1, 1), then s 0(-- 0-- 2) holds. On the other
hand, we can show that S(O(-- 0--2)) <
S(O) by elementary calculation. So we have

s(o) < s(e) < 98(0(- o- 2)) < 9s(0)".
Hence we obtain S(0) < 9, which contradicts to
(1). If (k, 1) (2, 1), then we have e (--
--2), and so 034- 20"4- e3- 0. Since the dis-
criminant e3(27e 4- 32) of the above must be
positive, we have e < 0. Similarly e’ < 0, e" < 0
hold. These contradict to ze’e" 1.

We can reduce (k, 1) (2, 0), (0, 2),
(1, 2) and (2,2) to (k, 1) (1, 0), (0, 1), (2, 1)
and (1,1) respectively. As a result, we have

Eo) 1. Therefore we obtain E
0--2).
Proof of Theorem 4. From Theorems 3.1

and 3.2 in Fujisaki [8, chap. 4], we can see that
De is the discriminant of K, so we have OK
4- Z0 + Z02. The rest can be proved in a similar
way to the proof of Theorem 3. V--]

Corollary 2. In the case f (x)-x-
(2t- 1)x (t 4- 2)x- 1, if De is square free,
then E (0, 20- 1.

Corollary 3. In the case f(x) --x (--
2t4- 1)x (t-- 2)x-- 1, if De is positive, both
of + 1 and 4t24- 8t- 23 are square free and

t 2 (mod 3), then E (0, 20- 1.
Proof of Corollarys 2 and 3. We can get

these results from Theorem 3 and 4 by the vari-
1

able transformation O" @.
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