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1. Introduction. Let f (x) be a cubic
polynomial with rational integer coefficients,
which is monic and irreducible. Suppose that all
roots 6, 8" and 6”7 of f(x) = O are real, and put
K =Q (6). Denote by D, the discriminant of
polynomial f(x). Let o, and Ex be the ring of in-
tegers and the group of units of K respectively.
Moreover we denote by E, the subset of E, con-
sisting of the units € with Ng,qe = 1. It is well
known by a theorem of Dirichlet [6] that there
exists a system of fundamental units {e,, &,} such
that

E.={% 1) X Eg and E; = {¢,, €.

Our purpose is to determine totally real cubic
fields such that the system of fundamental units
can be given in the form {8 + 7, 6 + s} for
some integers 7, s. Note that we can reduce our
problem to the case that @ is a unit in K (i.e., » =
0).

First, for the minimal polynomial f(x) of 6
over Q, we can get the following:

Proposition 1. Suppose that s is a non-zero
integer and both 6 and 6 + s are in Ey. Then
there is an integer f such that

(a) if 6 and 6 + s are in E4, then f(x) =

x(x+s)(x+0DH — 1.
(b) if & and — @ — s are in E5, then f(x)

=:c<x2+ (s+t)x+<st—%>)—1.

It is easy to prove this proposition.

Conversely we should investigate whether
{6, 6 + s} is a system of fundamental units. As
for (i), we can reduce to the case t=1,s =t +
1 because of (8 + H = (6 + s)™". In this condi-
tion, Stender [3] and Thomas [4] proved E; =
(@, 0 + s>, but we will prove this in a different
way. As for (ii), there are only four cases s =
+ 1, = 2. The case (ii) s =1 was studied by
Watabe [5] completely.

Our main results are as follows:

Theorem 1 (Stender [3], Thomas [4]). In the

case flx) =x(x+ O (x+s) —1(s, t € D), if
D, is positive, square free and t =1, s = ¢t+ 1,
then E5 = <60, 6 + s> holds.

Theorem 2 (s = — 1). In the case f(x) =
(2P + -1+ (—t+2) —1¢e€Z),if
D, is positive and square free, then Ex = <6, —
6 + 1> holds.

Theorem 3 (s = 2). In the case f(z) = x
(2°+ (t+2)x+2t—1) — 1€ Z),if D, is
square free, then E; = <6, — 6 — 2> holds.

Theorem 4 (s = — 2). In the case f(x) =
(P + (t—2)x—2t+1)—1G€Z), if D,
is positive, both of # + 1 and 4t* + 8t — 23 are
square free and ¢ # 2 (mod3), then E; = <6,
— 6 + 2> holds.

2. Preliminaries.
from Ey to Z by

S© = 3l — ) + € — ) + (& — %

Moreover, define o (K), and B, (K) for ¢, in
A(K) by

A(K) = {e € E;\1} | S(e) is minimum},

8. (K) = {e € Ex\ e} ; n € Z}| S(o) is minimum}.

The following lemmas will be useful for the
proof of theorems.

Lemma 1 (Brunotte, Halter-Koch [2]). If ¢,
is in # (K) and ¢, is in B, (K), then (Eg : <&y,
g,) < 4 holds.

Lemma 2 (Godwin [1]). For any ¢, ¢, &, in
E; and integer m = 2, we have -

S’ < 9S(E), S’ < 9S(E), S©)" <=
S(eye,) < 3S(e))S(ey), S < S

Lemma 3. In the conditions of Theorem 1,
it holds that
S6(0 + 5)) < SO)7, SB%(6 + s)) < S()°.
Proof. We can easily prove Lemma 3 by
elementary calculation. ]
Lemma 4. In the conditions of Theorem 1,
we have S(0) = 12.
Proof. We have S(8) = (t+ s)* — 3st=1+*

We define a function S

S(E™,
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— ts+ s”and in the case t > 1, s > t+ 1, if D,
is positive and square free, then we have (¢, s)
*+ (1, 2), (1, 3), (2, 3), 3,4). ]

3. Proofs of Theorems 1 and 2. In the con-
dition of Theorem 1, the case s = ¢+ 1 can be
reduced to the case £ = 1. So we have only to
prove thecase t =1, s = ¢+ 2.

For the proof of Theorem 1, we need some
lemmas. First we shall show the next lemma.

Lemma 5. In the conditions of Theorem 1,
we have 0 € 4(K).

Proof. Since D, is square free, we have og
=7+ Z0 + Z6> (Cohen [7]). For any u €
EZ\{1} which is expressed in the form # = a +
bO + c6°, a, b, c € Z, (b, ¢) # (0, 0), we have

S(w) = SOb* + T + U®)be,
where

T0): = 10— 0" + (0 = 0 + (0" — )

=t -t -6+ s4—65,
U@ :=@0-0)0"—0%+ @ — 606" — 0"
+(0"— 06" - 6"
=20 +st’+ st —25°+0.
If ¢ =0, then S(x) = S(O)bd° = S(6). Next,
suppose |¢| = 1. Then we have
S) =S@) = —ts+sH0" + (=28 + st +
s‘t—2s°+ 9)b
+ (' =G+ D+ s—6)t+ (5" —s° — 6s)).
If t=2,s=t+ 2, then we can see the discrimi-
nant of the above polynomial in b is negative. So
we have S(u) > S(0). If t=1, s = 3, we also
have S (#) = S (6 ) because the minimum of
Su)—S@)is 2s—6 =20 when b= £
Finally, suppose |¢| = 2. Then we have S(u) —

S = S(uw) — %5(0)(32 and we can see the dis-

1
criminant of S(u) — ZS(O) ¢®, as a polynomial in

b, is negative. So we have S(u#) > S(0). There-
fore we obtain 8 € 4 (K). ]

Next, we shall show the next lemma.

Lemma 6. In the conditions of Theorem 1,
we have 6 + s € B,(K).

Proof. Since S(6 + s) = S(6#), its minimal-
ity is obvious.

Suppose 8 + s = 0", m € Z. Since f(x) =
22+ (t+ s)x® + tsz — 1, it is easy to see m #
0, =1, £ 2, = 3. Suppose m = 4. From Lemma
2, we have

” 3m+1
SO <=

3m+1

2

3m+1

2

S(") = S0+ s) = S(6).
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2
< 5. If m £ — 4, again from Lemma 2, we simi-
larly get S(6) < 12. These contradict to Lemma
4. Thus we obtain 0 + s € B,(K). ]

Proof of Theorem 1. If we put E, = <6, 0
+ s, from Lemma 1 we have

(Ef : E) < 4.

First, we shall show that (Eg : E,) is odd.
Suppose that (E; : E,) is even, then there exists
¢ € Ef\ E, such that

e€=00+9", k 1<, 1).

If (k, 1) = (0, 0), then & = 1. As ¢ € Ey,
we have ¢ = 1. This is a contradiction. If (k, 1)
= (1, 0), then & = 6. Since

S(0)° < S(e)? < 9S(H),
we have S(68) < 9. This contradicts to Lemma 4.
If (k, 1) = (0, 1), then we obtain a contradiction
similarly. If (k, ) = (1, 1), then ¢* = 6(6 + s).
So we have
S(e)* < 9S(*) = 95(6(8 + 5)) < 9S(O).

Hence we obtain S(e) < 3S(6). But we can see
by elementary way that no unit & can satisfy the
following conditions simultaneously :

&= 006 +s),

Se) < 35(H),

e € Eg.
Finally we shall show that (Eg : E,) # 3. Sup-
pose that (Eg : E,) = 3, then there exists & €
EZ\ E, such that

£=00+s", k1e{0,1,2}.

If (k, 1) = (0, 0), then ¢ = 1. This is a con-
tradiction. If (k, 1) = (1, 0), then & = 6. Since
S(6)° < S(e)* < 9S(H),
we have S() <i{9. In a similar way, if (k, )
= (0, 1), (1, 1), then it follows from Lemmas 2
and 3 that S(6) < V9, 9 respectively. These con-
tradict to Lemma 4. If (k, I) = (2, 1), then &’ =

6°(6 + s). Since
S()® < 9S(%) = 95(6*(6 + 5)) < 95(6)°,

we have S(e) <V9S(0). If ¢, s) # (2,4), 3,5),
(4, 6), (5, 7), (2,5), we can see by elementary
way that no unit € can satisfy the following con-
ditions simultaneously :

&= 6°0+s)),

S() <950,

¢ € Eg.
Otherwise, we can improve S(¢) < {/9S(6), and
we can also see that there is no unit € satisfying
these improved condition.

Hence we have S (0) < (3’”*1)%3 <3—5>%
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The cases (k, 1) = (2,0), (0,2), Q, 2),
and (2, 2) are reduced to the cases (k, [) =
1, 0, (0, 1), (2, 1) and (1, 1) respectively. This
completes the proof of Theorem 1. ]

Corollary 1. In the case f(z) = z° F (tx
+1)Gsx+1)t<s,t#0,s+0), if D, is
positive and square free, then E; is generated by
two of the three units = 8, =t £ 1, + s =
1.

Proof of Corollary 1. This follows by the

. . 1 .
variable transformation 6: = =% g in Theorem
1. ]

Proof of Theorem 2. If we put s: = —1, ¢:
= t+ 1 in Corollary 1, we obtain the polynomial
in Theorem 2. So we can get Theorem 2. ]

4. Proofs of Theorem 3 and 4. Proof of
Theorem 3. Since we can reduce the case t < 0
to the case f = 1 and moreover the cases t =
1, 2, 3 do not satisfy the condition in Theorem 3,
we may consider the case { = 4. In this case, we
have
(1) SO =@¢t+2"—3@Qt—1) = —2+7>15.

In the conditions in Theorem 3, we have oy
=7 + Z6 + Z6” (Cohen [7]). 6 € 4(K) and —
0 — 2 € B,(K)hold by the similar way to the
proof of Lemmas 5,6.

Let E, = <f, — 6 — 2). From Lemma 1 we get
(E¢: E,) < 4.

We shall first show that (Eg : E,) is odd.
Suppose that ( E; : E,) is even, then there exists
e € Ef\ E, such that

e=0"(—60—-2)", k1€ {0,1).

It follows by the same argument as in the
proof of Theorem 1 that (k, I) # (0, 0), (1, 0)
and (0,1). If (k, 1) = (1, 1), then &€= 6(— 0
— 2) holds. Hence we have 6>+ 20+ & = 0.
Since 6§ € R, we have 1 — ¢ > 0. Thus we
obtain |e| < 1. Similarly, |¢'| < 1, |¢”| < 1 hold.
These contradict to eg’e” = 1.

We shall next show that (Ej: E,) # 3.
Suppose that (Eg : E;) = 3, then there exists ¢
€ E;\ E, such that

€=0—0-2)", kle0,1,2.

In the cases (k,1) = (0,0), (1, 0) and
(0,1), we can obtain a contradiction by the simi-
lar way to the proof of Theorem 1. If (k, I) =
(1, 1), then ¢ = 6(— 6 — 2) holds. On the other
hand, we can show that S@(— 08— 2)) <
S(6)? by elementary calculation. So we have
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S < S(e)® < 9S(6(— 6 — 2)) < 9S()*.
Hence we obtain S(6) < 9, which contradicts to
(1).1f (k, 1) = (2, 1), then we have ¢’ = °(— 6
—2), and so 6°+ 26° + ¢ = 0. Since the dis-
criminant — &°(27¢° + 32) of the above must be
positive, we have ¢ < 0. Similarly ¢ <0, " <0
hold. These contradict to eg’e” = 1.

We can reduce (k,1) = (2,0), (0, 2),
(1, 2) and (2,2) to (k, 1) = (1, 0), (0, 1), (2, 1)
and (1,1) respectively. As a result, we have (Ey :
E) = 1. Therefore we obtain Eg = <6,
— 60— 2>, ]

Proof of Theorem 4. From Theorems 3.1
and 3.2 in Fuyjisaki [8, chap. 4], we can see that
D, is the discriminant of K, so we have og = Z
+ Z6O + Z6°. The rest can be proved in a similar
way to the proof of Theorem 3. ]

Corollary 2. In the case f (x) =z’ —
Ct— D’ — ¢t +2)x—1,if D, is square free,
then Ef = <0, 26 — 1D.

Corollary 3. In the case f(x) =z’ — (—
2t + 12’ — (t— 2)x — 1, if D, is positive, both
of t+ 1 and 4" + 8t — 23 are square free and
t # 2 (mod 3), then E; = <6, 260 — 1).

Proof of Corollarys 2 and 3. We can get
these results from Theorem 3 and 4 by the vari-

able transformation 6 : = % ]
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