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An analogue of the Hardy theorem for the Cartan motion group

By Masaaki EGUCHI, *)’ * *)Shin KOIZUMI, *)’ * * *) and Keisaku KUMAHARA* * **)

(Communicated by Heisuke HIRONAKA, M. J. A., Dec. 14, 1998)

1. Introduction. The aim of this note is to
prove an analogue of the Hardy theorem for the
Cartan motion group. In the case of the Euclidean
space, various forms of the uncertainty principle
between a function and its Fourier transform are
known. One of such theorems is known as the
Hardy theorem. The Hardy theorem (cf. [1, pp.
155-158]) asserts that if a measurable function

f on / satisfies fl < Cexp{ ax and
<-- Cexp{-- by} then f-- 0, or fig a constant
multiple of exp{- ix2}, or there are infinitely
many such f according as ab > 1/4, or ab- 1/4,
or ab< 1/4. (Here we take 27(y) (1//2:r)
f f(x) exp{v/-11 xy} dx as the definition of
the Fourier transform of f)

Recently A. Sitaram and M. Sundari [5]
generalized this theorem to the cases of the semi-

simple Lie groups with one conjugacy class of
Cartan subgroups, the Riemannian symmetric
spaces and SL (2, /). And also M. Sundari [6]
showed the Hardy theorem for the Euclidean mo-
tion group. By the way, in the case of the Cartan
motion group, K. Kumahara [4] defined the
Fourier transform by using the representation
induced from p* and studied the images of
some function spaces under the Fourier trans-
form. By using estimates of matrix elements of :r
and applying a similar argument to [5,6], we can
get an analogue of the Hardy theorem for the
Cartan motion group.

2. Notation and preliminaries. The stan-
dard symbols Z, / and C shall be used for the
integers, the real numbers and the complex hum-
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bers. If V is a vector space over R, Vc, V* and

Vc* denote its complexification, its real dual and
its complex dual, respectively. For v V, ttv,
v and 7 denote its real part, its imaginary part
and its complex conjugate, respectively. For a

topological space S and a subset T of S, C1 (T)
denotes the closure of T in S. For a Lie group L,
L denotes the set of equivalence classes of irre-

ducible unitary representations of L.
Let Go be a connected semisimple Lie group

with finite center and g its Lie algebra. We fix a
maximal compact subgroup K of G and denote
by 0 the corresponding Cartan involution. We set

{ X fl" OX-- X}. Let Go- KAN and

fl- t -t- n -+- n be Iwasawa decompositions of Go
and g, respectively. We denote by <’, ") the
Killing form of g and put IIxll x, ox>.
We also use the same symbols <’, ") and I"
the bilinear form and the norm on p* coming
from those on p. In the notation introduced
above, the semidirect product G- K N p is cal-
led the Cartan motion group. For any g G, we

write g- (k g), X( g)), where k(g) K and
X(/7) P. If k K and X p, we simply write
k for (k, 0) and X for (e, X), e being the unit

element in K. With these notation, we have
-1)(2.1) k(g-1) k(g) -1 X(g Ad(k(g))-lX(g)

k(glg) k(gl)k(g), X(gig) id(k(gi))X(g) / X(gl),
for g, g, g2 G.

Let M denote the centralizer of a in K. For g
G and p*, we define g p* by g(X)

+ +(Ad(k(g)) IX), (X ). Let n and n be
the positive Weyl chambers in n and n*, respec-
tively. For X , we choose X+

in Cl(n+) such
that X + Ad(K)X N Cl(n+). And if e ., we

define + Cl(n*+) by a similar way to the case
of . Let g G. If we pick kl, k. K such that
Ad(kl)X(g) /- X(g) and k- k-(lk(g), then g
is written as g- klX(g)+k. Thus we have the
decomposition G K CI(n+)K.

Finally let dk be the Haar measure on K
normalized as fldk- 1. The Killing form in-

duces Euclidean measures on and *. We nor-
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malize them by multiplying (2) -aimp/
and de-

note them by dX and d, respectively. Then dg
dkdX is a Haar measure on G. Under the de-

composition G- K CI(a+)K, the following integ-
ral formula holds (cf. [3, p. 195]).

(2.2) f(g)dg
IM

Here + denotes the set of all positive restricted
roots and ma denotes the multiplicity of +.

3. The Fourier transform on G. In this
note, according to [2,4], we shall define the
Fourier transform on G by using the representa-
tions induced from the characters of p instead of
using the irreducible unitary representations for

LG. Let p*. Define the action of G on (K)
by
(3.1) ((g))(k)

1(Ad(k)-X(g)) -1 Le (k(g) k), ( (K)).
LThen (, (K)) is a (reducible) unitary repre-

sentation for G. It is to be noted that any irre-
ducible unitary representation for G is contained
in for some O* as an irreducible compo-
nent. Let R be the right regular representation of

LKon (K) ThenR(g) (g)R for k
K. For f L (G), we define its Fourier trans-
form () by

3.2) () f(g) (g) dg.

If f L (G) L (G), then the following Parsev-
al formula holds (cf. [4]).

where [-[I,s denotes the Hilbert-Schmidt norm.
In the following, for all v , we fix a re-

0resentative of r and by abuse of notation, write
v for it again. Since is the left regular repre-

Lsentation of K on (K), it follows from the
Peter-Weyl theorem that

i(a.) ul d(r)r (K) V E.
vK

Here V denotes the representation space of v
and d(v) dim V. If Ty VV, we set

T(k) T(v(k)-y) C(K). Let g G
and define

(a.a) (e) -Ilx(e)II,
(hd(k)_X(o)() e dk.

Let r, %R. We write -Homc (V, V)

and denote by (’, -)/ and II" I1 the canonical in-

ner product and the corresponding norm on

respectively, that is, for S, T , (S, T)-v
tr (T’S) and TII/- < T, T),, T* being the
adjoint operator of T. For T g, we set

(.) E(T, , a)
1 (Ad(k)-lX(g))v(k)Tv(k-ik(g))e dk.

We first remark (cf. [3, p. 424]) that if
then
(3.7) [(g)l

[(X(g) +)[ e-(d()-ix()+)dk
-k()(X(o)e )dk

and thus the function (g) makes sense for
all p. We also have for k, ki, k K,
p and g G that

-1)(3.8) a(kigk) a( g) a( g a( g)
-1(kgk) g) g g)

E( T, , kigk) i(k)E( T, , g)v(k),
E( T, , g)*- E( T*, , g

E( T, k, g) E(vl(k)-iTv2(k), , g).
Moreover, we can easily get the following lemma.

Lemma 3.1. Retain the above notation. Let T
and Ty V V, (i- 1, 2).

(1) The function E (T, g) can be ex-

tended to a holomorphic function on p.
(2) If p then
( T, , ) [ T[e()(()).

(3) If p*, then

((g)T2Y2, TIIL2(K) (E( VV2, , g)2, ivvi
4. The main theorem. We first note that a

measurable function f on G is said to be exponen-
tially decreasing if f satisfies the following condi-
tion

ra(g)
(.) ess. sup e If(e)] < ,

gG

for all r 0. Such functions belong to L(G) for
all 1 p g and all the matrix elements

(ff()Tv, T)(n) are holomorphic on

(cf. [2]). To prove the Hardy theorem, we need the
following lemma of A. Sitaram and M. Sundari.

Lemma 4.1 [5, Lemma 2.1]. Let h be an en-
tire function on Cn

such that
h(z) Ce (z C) h(t) < Ce- (t )

for some a 0 and C O. Then h (z) const.
exp(- a(z + + z)).

Our aim is to prove the following theorem.
Theorem 4.2 (the Hardy theorem). Letf be a
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measurable function on G such that
If(g)l <- Ce-a()2’ I1()11. - Ce

1
for C > O, a 0 and b O. If ab
0 (a.e.).

Proof Since f is exponentially decreasing, f
LI(G) N L(G) and thus the Parseval formula

holds for f Let , z and choose T
and v V (i- 1 2) so that

1. We have from Lemma 3.1 (3) and (2.2) that
(.2) (()%,

f()(E(r?r,, , ), ),,d

H

We have from the assumption of f and Lemma
3.1 (2) that

(4.3) ]f(kHk)l Ce-(): Ce
I((?, , ,H), ,), I e

and hence_
vol(KIM)C-allll()+(H)

aX+

whr vol(K/M) i dk.
1

Choose 0 a’ a so that a’b , then

-allll ’1111e + (H) C’e for som

exists H Cl (+) suok tkat (3)+(H)
+H} for H . Taki ito account IIH II-

I1()+11- 31 I111,
(4.5)

-a’llHIIz+(H’Hfbdg

e_a, llHiCC’ v01(llllz IZdH.
ince the integral appeared in the lst expression
in (4.5) hd to b bounded, w c find con-
stant C1 > 0 such that
(4.6) I<()., 1.1><., I cle’" ’
for all 7 e .

0n the other hnd, it follows from the
assumption of f that

(4.7) I<()%, T,)’()I ce-llell’
for all p*. Applying Lemma 4.1 together
with (4.6) and (4.7), we can find a constant Cz
such that for p*,

ill(4.8) (f()r,,, r,,,)t,()- C,e-’
Consequently we have

(b
(4.9) ICle -)lll g C,

1
nd, since b 4a’ 0, this is im0ossiblc unless

C 0. $o

(4.s0) (](7).. ..(.)- 0,
and the Prseval ormul yields

Thus we have i 0 (a.e.).
Remark. In [2], M. Eguchi, K. Kumhr

and Y. Mut studied the characterizations of the
Schwartz spces for the motion grou0s. In their

0aper, by the motion grouo is meant the semi-
direct oroduct K V o rel vector soce V
nd connected comoct Lie grou0 K cting

orthogonally on V. For such grou0s, if we define
the Fourier transform by using the
tions induced from the characters of V, we

get the Hrdy theorem for the motion grou by
ap01ying a similar rgument to this note.
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