Note on the ring of integers of a Kummer extension of prime degree. IV

By Humio Ichimura

Department of Mathematics, Faculty of Sciences, Yokohama City University, 22-2, Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027 (Communicated by Shokichi IYANAGA, M. J. A., June 12, 2001)

Abstract: Kawamoto [5, 6] proved that for any prime number p and any $a \in \mathbf{Q}^{\times}$, the cyclic extension $\mathbf{Q}(\zeta_p, a^{1/p})/\mathbf{Q}(\zeta_p)$ has a normal integral basis (NIB) if it is tame. We show that this property is peculier to the rationals \mathbf{Q} . Namely, we show that for a number field K with $K \neq \mathbf{Q}$, there exist infinitely many pairs (p, a) of a prime number p and $a \in K^{\times}$ for which $K(\zeta_p, a^{1/p})/K(\zeta_p)$ is tame but has no NIB. Our result is an analogue of the theorem of Greither *et al.* [3] on Hilbert-Speiser number fields.

Key words: Normal integral basis; Kummer extension of prime degree.

1. Introduction. It is well known by Noether that a finite Galois extension L/K of a number field K is tame if it has a normal integral basis. Here, L/K is tame when it is at most tamely ramified at all finite prime divisors, and it has a normal integral basis (NIB for short) when O_L is free of rank one over the group ring $O_K[\text{Gal}(L/K)]$, O_K (resp. O_L) being the ring of integers of K (resp. L). It is also well known by Hilbert and Speiser that when $K = \mathbf{Q}$, any abelian extension L/\mathbf{Q} has a NIB if it is tame. Recently, Greither, Replogle, Rubin and Srivastav [3] proved that when $K \neq \mathbf{Q}$, there exists a tame abelian extension L/K without NIB. Namely, the Hilbert and Speiser type assertion holds only for \mathbf{Q} .

On the other hand, Kawamoto [5, 6] proved that for any prime number p and any rational number $a \in \mathbf{Q}^{\times}$, the cyclic extension $\mathbf{Q}(\zeta_p, a^{1/p})/\mathbf{Q}(\zeta_p)$ has a NIB if it is tame. Here, ζ_p denotes a primitive p-th root of unity. Let us say that a number field K satisfies the property (Q) when for any prime number p and any $a \in K^{\times}$, the cyclic extension $K(\zeta_p, a^{1/p})/K(\zeta_p)$ has a NIB if it is tame. The rationals \mathbf{Q} satisfies the property (Q). The purpose of this note is to show the following theorem on this property, which is analogous to the result of Greither *et al.* and is shown in a way quite similar to the argument in [3, Section 4].

Theorem. For a number field K with $K \neq \mathbf{Q}$, there exist infinitely many pairs (p, \bar{a}) of a prime number p and a class $\bar{a} \in K^{\times}/(K^{\times})^p$ with $a \in K^{\times}$ for which the cyclic extension $K(\zeta_p, a^{1/p})/K(\zeta_p)$ is tame but has no NIB. Namely, there exists no number field satisfying the property (Q) except for the rationals **Q**.

Remark 1. Here, we fix a prime number p. A number field K satisfies the property $(\mathbf{Q})_p$ when for (this fixed p and) any $a \in K^{\times}$, the cyclic extension $K(\zeta_p, a^{1/p})/K(\zeta_p)$ has a NIB if it is tame. In [4, II], we gave a sufficient condition for K to satisfy $(\mathbf{Q})_p$, and gave some examples of p and K satisfying $(\mathbf{Q})_p$.

2. Lemmas. In this section, we prepare some lemmas which are necessary to show the theorem. For a number field K, we denote by E_K the group of units of K. For an integer a of K with $a \neq 0$, we say that a is square free at K when the principal ideal aO_K is square free in the group of ideals of K. (In particular, any unit of K is square free.) For a prime number p, we put $\pi_p = \zeta_p - 1$.

Lemma 1. Let p be a prime number. Let K be a number field with $\zeta_p \in K^{\times}$, and a an element of K^{\times} relatively prime to p.

- (I) The cyclic extension $K(a^{1/p})/K$ is tame if and only if $a \equiv u^p \mod (\pi_p)^p$ for some $u \in O_K$.
- (II) Assume that a is an integer square free at K. Then, $K(a^{1/p})/K$ has a NIB if and only if $a \equiv \epsilon^p \mod (\pi_p)^p$ for some unit $\epsilon \in E_K$.

The first assertion is well known (cf. Washington [8, Exercises 9.2, 9.3]). The second one is a consequence of a theorem of Gómez Ayala [2, Theorem 2.1] (cf. also [4, I]).

Lemma 2. Let G be a finite group with identity e, and H its subgroup with $H \neq \{e\}$. As-

¹⁹⁹¹ Mathematics Subject Classification. 11R33.

sume that H is not a normal subgroup of G and that $\cap_{\sigma} \sigma^{-1} H \sigma = \{e\}$. Here, σ runs over the elements of G. Then, there exists a subgroup H' of G such that $H' \neq \{e\}$ and $H \cap H' = \{e\}$.

Proof. Let N be the normaliser of H in G, and $\{\sigma_1, \ldots, \sigma_R\}$ a complete set of representatives of G/N. From the assumptions on H, we have $R \ge 2$ and $\bigcap_j \sigma_j^{-1} H \sigma_j = \{e\}$ where j runs over the integers with $1 \le j \le R$. For an integer S with $1 \le S \le R$, we put

$$H_S = \bigcap_{j=1}^S \sigma_j^{-1} H \sigma_j$$

We have $H_R = \{e\}$. Let r be the smallest integer such that $H_r = \{e\}$. We see that $r \ge 2$ as $H \ne \{e\}$, and that $H_{r-1} \ne \{e\}$. Therefore, the subgroup $H' = \sigma_r H_{r-1} \sigma_r^{-1}$ has the desired property.

For a prime ideal \mathfrak{p} of a number field K and an element a of K^{\times} relatively prime to \mathfrak{p} , let $[a]_{\mathfrak{p}}$ be the class in the cyclic group $(O_K/\mathfrak{p})^{\times}$ represented by a, and let $o_{\mathfrak{p}}(a)$ be the order of the class $[a]_{\mathfrak{p}}$. When K/\mathbf{Q} is Galois and \mathfrak{p} is unramified over \mathbf{Q} , we denote by $(\mathfrak{p}, K/\mathbf{Q})$ the Frobenius automorphism of \mathfrak{p} . The following lemma follows from [3, Lemma 8].

Lemma 3. Let K/\mathbf{Q} be a finite Galois extension with $K \neq \mathbf{Q}$, and $G = \operatorname{Gal}(K/\mathbf{Q})$. Fix a prime number f dividing the order |G| of G, and an element $g \in G$ of order f. Let ℓ be an arbitrary odd prime number such that $\ell \equiv 1 \mod f$ and $\ell \nmid d_K$, d_K being the discriminant of K. Then, there exist infinitely many prime ideals \mathfrak{p} of K unramified over \mathbf{Q} satisfying the following three conditions. We put $p = \mathfrak{p} \cap \mathbf{Q}$.

(i) $(\mathfrak{p}, K/\mathbf{Q}) = g$.

(ii) $p \not\equiv 1 \mod \ell$ but $p^f \equiv 1 \mod \ell$.

(iii) $o_{\mathfrak{p}}(\epsilon) \mid (p^f - 1)/\ell$ for all units $\epsilon \in E_K$.

3. Proof of Theorem. For a prime number *p*, we put

$$K^{(p)} = K(\zeta_p)$$

for brevity. First, we deal with the case where K is Galois over \mathbf{Q} with $G = \operatorname{Gal}(K/\mathbf{Q})$. Fix a prime number f dividing |G|, and an element $g \in G$ of order f. Choose an odd prime number ℓ and a prime ideal \mathfrak{p} of K as in Lemma 3 with $p = \mathfrak{p} \cap \mathbf{Q}$. By (i) of Lemma 3, \mathfrak{p} is of degree f over \mathbf{Q} . Let s be the largest integer such that ℓ^s divides $p^f - 1$. By (ii) of Lemma 3, $s \geq 1$. By (iii) of Lemma 3, we see that

(1)
$$\ell^s \nmid o_{\mathfrak{p}}(\epsilon)$$
 for all units $\epsilon \in E_K$.

Choose an integer u of K relatively prime to p such that the class $[u]_{\mathfrak{p}}$ of u generates the cyclic group $(O_K/\mathfrak{p})^{\times}$ of order $p^f - 1$. By the Chebotarev density theorem, there exist infinitely many principal prime ideals aO_K of K relatively prime to p such that $a \equiv u^p \mod (\pi_p)^p$. Then, $K^{(p)}(a^{1/p})/K^{(p)}$ is a tame cyclic extension of degree p by Lemma 1 (I), and a is square free also at $K^{(p)}$. We show that $K^{(p)}(a^{1/p})/K^{(p)}$ has no NIB. Assume, to the contrary, that it has a NIB. Then, by Lemma 1 (II), $a \equiv \eta^p \mod (\pi_p)^p$ for some unit η of $K^{(p)}$. From the above two congruences, we see that $u \equiv \eta \mod \pi_p$. We may well assume that $K \cap \mathbf{Q}(\zeta_p) = \mathbf{Q}$. Then, from this congruence, we obtain

$$u^{p-1} \equiv \epsilon \mod \mathfrak{p} \quad \text{with } \epsilon = N_{K^{(p)}/K}(\eta)$$

by taking the norm from $K^{(p)}$ to K. We see that $\ell^s | o_{\mathfrak{p}}(u^{p-1})$ from (ii) of Lemma 3 and the choice of u. Hence, we obtain $\ell^s | o_{\mathfrak{p}}(\epsilon)$, which contradicts (1). Therefore, $K^{(p)}(a^{1/p})/K^{(p)}$ has no NIB.

Next, we deal with the case where K is not Galois over \mathbf{Q} . Let \widetilde{K} be the Galois closure of K over \mathbf{Q} , and let $G = \operatorname{Gal}(K/\mathbf{Q})$ and $H = \operatorname{Gal}(K/K)$. Since G and H satisfy the conditions of Lemma 2, there exists an element $g \in G$ such that (a) the order of g is a prime number f and (b) $H \cap \langle g \rangle = \{e\}$. Let F be the intermediate field of K/\mathbf{Q} corresponding to $\langle g \rangle$ by Galois theory. Then, $F \subsetneqq \widetilde{K}$ and $KF = \widetilde{K}$. We apply Lemma 3 for this triple (K, f, g). Choose an odd prime number ℓ and a prime ideal \mathfrak{P} as in Lemma 3. Put $\mathfrak{p} = \mathfrak{P} \cap K$, $\mathfrak{p}_F = \mathfrak{P} \cap F$, and $p = \mathfrak{P} \cap \mathbf{Q}$. Since $(\mathfrak{P}, \widetilde{K}/\mathbf{Q}) = g$, we see that \mathfrak{P} is of degree fover F and that \mathfrak{p}_F is of degree one over Q. Hence, by KF = K, **p** is of degree f over **Q**. Let s be, as before, the largest integer such that ℓ^s divides $p^f - 1$. From Lemma 3, we see that $\ell^s \nmid o_{\mathfrak{P}}(\delta)$ for any unit δ of \widetilde{K} . Hence, for any unit ϵ of K, $\ell^s \nmid o_{\mathfrak{p}}(\epsilon)$. Namely, (1) holds also for the non-Galois case. Let u be an integer of K such that the class $[u]_{\mathfrak{p}}$ generates the cyclic group $(O_K/\mathfrak{p})^{\times}$ of order $p^f - 1$. Choose a principal prime ideal aO_K of K relatively prime to p such that $a \equiv u^p \mod (\pi_p)^p$. Then, we see that the cyclic extension $K^{(p)}(a^{1/p})/K^{(p)}$ is tame but has no NIB exactly similarly to the Galois case.

4. Proof of Lemma 3. Though this lemma is a consequence of [3, Lemma 8], we give its proof for the convenience of the reader. Let K, G, f, g and ℓ be as in Lemma 3. We put

$$L = K^{(\ell)} (= K(\zeta_{\ell}))$$
 and $M = L(\epsilon^{1/\ell} \mid \epsilon \in E_K).$

No. 6]

The field M is Galois over \mathbf{Q} . Since $\ell \nmid d_K$, we have a canonical decomposition

$$\operatorname{Gal}(L/\mathbf{Q}) = \operatorname{Gal}(K/\mathbf{Q}) \times \operatorname{Gal}(\mathbf{Q}(\zeta_{\ell})/\mathbf{Q})$$

From this and $\ell \equiv 1 \mod f$, we see that there exists an element $\sigma \in \operatorname{Gal}(L/\mathbf{Q})$ of order f such that $\sigma|_K = g$ and $\sigma|_{\mathbf{Q}(\zeta_\ell)}$ is also of order f. We can choose an element $\rho \in \operatorname{Gal}(M/\mathbf{Q})$ of order f such that $\rho|_L = \sigma$ because M/L is an ℓ -extension and $(\ell, f) = 1$. By the Chebotarev density theorem, there exist infinitely many prime ideals \mathfrak{P} of M unramified over \mathbf{Q} such that

(2)
$$(\mathfrak{P}, M/\mathbf{Q}) = \rho.$$

We put

$$\mathfrak{p} = \mathfrak{P} \cap K, \quad \mathfrak{p}_{(\ell)} = \mathfrak{P} \cap \mathbf{Q}(\zeta_{\ell}), \quad p = \mathfrak{P} \cap \mathbf{Q}.$$

This prime ideal **p** satisfies the condition (ii) since

$$(\mathfrak{p}_{(\ell)}, \mathbf{Q}(\zeta_{\ell})/\mathbf{Q}) = \rho|_{\mathbf{Q}(\zeta_{\ell})}$$

is of order f. From (2), we obtain

(3)
$$(\mathfrak{p}, K/\mathbf{Q}) = \rho|_K = g.$$

Hence, the condition (i) is satisfied. We see that \mathfrak{P} is of degree one over K and \mathfrak{p} is of degree f over \mathbf{Q} because of (2), (3) and because ρ and g are both of order f. Therefore, for any unit $\epsilon \in E_K$, we have $\epsilon^{1/\ell} \equiv a \mod \mathfrak{P}$ for some $a \in O_K$, and hence $\epsilon \equiv a^{\ell} \mod \mathfrak{p}$. Then, it follows that the order $o_{\mathfrak{p}}(\epsilon)$ of the class $[\epsilon]_{\mathfrak{p}}$ in $(O_K/\mathfrak{p})^{\times}$ divides $(p^f - 1)/\ell$. Thus, the condition (iii) is satisfied.

Remark 2. Let K be a real quadratic field, and ϵ a fundamental unit of K. Masima [7] and Chen, Kitaoka and Yu [1] studied the distribution of the orders $o_{\mathfrak{p}}(\epsilon)$ for prime ideals \mathfrak{p} of K, and obtained some density results. Some arguments similar to the proof of Lemma 3 are also found in their papers.

Acknowledgements. This work is partially supported by Grant-in-Aid for Scientific Research (C) (No. 13640036), the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- Chen, Y.-M., Kitaoka, Y., and Yu, J.: Distribution of units of real quadratic number fields. Nagoya Math. J., 158, 167–184 (2000).
- [2] Gómez Ayala, E.: Bases normales d'entiers dans les extensions de Kummer de degré premier. J. Théor. Nombres Bordeaux, 6, 95–116 (1994).
- [3] Greither, C., Replogle, D., Rubin, K., and Srivastav, A.: Swan modules and Hilbert-Speiser number fields. J. Number Theory, **79**, 164–173 (1999).
- [4] Ichimura, H.: Note on the ring of integers of a Kummer extension of prime degree, I (2000) (preprint); Note on the ring of integers of a Kummer extension of prime degree. II. Proc. Japan Acad., 77A, 25–28 (2001); Note on the ring of integers of a Kummer extension of prime degree. III. Proc. Japan Acad., 77A, 71–73 (2001).
- [5] Kawamoto, F.: On normal integral basis. Tokyo J. Math., 7, 221–231 (1985).
- [6] Kawamoto, F.: Remark on "On normal integral basis". Tokyo J. Math., 8, 275 (1985).
- [7] Masima, K.: On the distribution of units in the residue class field of real quadratic fields and Artin's conjecture. RIMS Kokyuroku, 1026, 156–166 (1998) (in Japanese).
- [8] Washington, L.: Introduction to Cyclotomic Fields. 2nd ed., Springer, Berlin-Heidelberg-New York (1997).