A note on unramified quadratic extensions over algebraic number fields

By Humio Ichimura
Department of Mathematics, Faculty of Sciences, Yokohama City University,
22-2, Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027
(Communicated by Shokichi IYanaga, m. J. A., May 12, 2000)

Abstract

We construct for each integer $n(\geq 3)$, infinitely many number fields of degree n each of which has an unramified quadratic extension with a power integral basis but no normal integral basis.

Key words: Unramified quadratic extension; power integral basis; normal integral basis.

1. Introduction. Let L / K be a finite extension of an algebraic number field K, and O_{L} (resp. O_{K}) the ring of integers of L (resp. K). One says that L / K has a power integral basis (PIB for short) when $O_{L}=O_{K}[\alpha]$ for some $\alpha \in O_{L}$. If L / K is Galois, it has a normall integral basis (NIB for short) when O_{L} is free of rank one over the group ring $O_{K}[\operatorname{Gal}(L / K)]$. Let p be a prime number. Assume that K contains a primitive p-th root ζ_{p} of unity and that L / K is an unramified cyclic extension of degree p. Here, L / K is "unramified" when it is unramified at all finite prime divisors. Then, it is known that L / K has a PIB if it has a NIB (see Childs [1] and the author [3]). On the other hand, the converse does not hold in general. Actually, we give in [4] some examples of real quadratic fields which has an unramified quadratic extension with PIB but no NIB. In this note, we prove that for each integer $n \geq 3$, there exist infinitely many number fields of degree n each of which has an unramified quadratic extension with PIB but no NIB. We give a more precise statement in the next section after introducing some notation.
2. Theorem. Let K be a number field and $E=E_{K}$ the group of units of K. We denote by $\mathcal{H}(K)$ the subgroup of $K^{\times} /\left(K^{\times}\right)^{2}$ consisting of classes $[\alpha]\left(\alpha \in K^{\times}\right)$such that $K\left(\alpha^{1 / 2}\right) / K$ is unramified (at all finite prime divisors). We put

$$
\begin{aligned}
\mathcal{E}(K): & =\mathcal{H}(K) \cap E\left(K^{\times}\right)^{2} /\left(K^{\times}\right)^{2} \\
\mathcal{N}(K): & =\left\{[\epsilon] \in E\left(K^{\times}\right)^{2} /\left(K^{\times}\right)^{2}\right. \\
& \quad \epsilon \in E, \epsilon \equiv 1 \bmod 4\} .
\end{aligned}
$$

[^0]It is well known (cf. Washington [7, Exercises 9.2, 9.3]) that for a unit $\epsilon \in E$, the extension $K\left(\epsilon^{1 / 2}\right) / K$ is unramified if and only if

$$
\epsilon \equiv u^{2} \quad \bmod 4 \quad \text { for some } u \in O_{K} .
$$

Therefore, it follows that

$$
\mathcal{N}(K) \subseteq \mathcal{E}(K) \subseteq \mathcal{H}(K)
$$

In [1], Childs proved that for $[\alpha] \in \mathcal{H}(K)$, the unramified quadratic extension $K\left(\alpha^{1 / 2}\right) / K$ has a NIB if and only if $[\alpha] \in \mathcal{N}(K)$. F. Kawamoto, N. Suwa and the author independently proved that for $[\alpha] \in \mathcal{H}(K), K\left(\alpha^{1 / 2}\right) / K$ has a PIB if and only if $[\alpha] \in \mathcal{E}(K)$. For a proof of this assertion, see [3]. We say that a finite extension L / K is strongly unramified when it is unramified at all prime divisors including the infinite ones. Let $\widetilde{\mathcal{H}}(K)$ be the subgroup of $\mathcal{H}(K)$ consisting of classes $[\alpha] \in \mathcal{H}(K)$ such that $K\left(\alpha^{1 / 2}\right) / K$ is strongly unramified, and

$$
\begin{aligned}
\widetilde{\mathcal{E}}(K) & :=\mathcal{E}(K) \cap \widetilde{\mathcal{H}}(K) \\
\widetilde{\mathcal{N}}(K) & :=\mathcal{N}(K) \cap \tilde{\mathcal{H}}(K)
\end{aligned}
$$

The groups defined above are naturally regarded as vector spaces over $\mathbf{F}_{2}=\mathbf{Z} / 2 \mathbf{Z}$. For a vector space M over $\mathbf{F}_{2}, \operatorname{dim}(M)$ denotes its dimension.

We prove the following:
Theorem. Let n, r_{1} and r_{2} be integers with $n=r_{1}+2 r_{2}$ and $n \geq 3, r_{1} \geq 1, r_{2} \geq 1$. Then, there exist infinitely many number fields K of degree n each of which has exactly r_{1} real prime divisors and satisfies the inequalities

$$
\left\{\begin{array}{l}
\operatorname{dim}(\widetilde{\mathcal{E}}(K) / \tilde{\mathcal{N}}(K)) \geq 1, \tag{1}\\
\operatorname{dim}(\tilde{\mathcal{N}}(K)) \geq\left[r_{1} / 2\right]+r_{2}-1
\end{array}\right.
$$

Here, $[x]$ denotes the largest integer not exceeding x.
Let K be a number field satisfying the conditions in the Theorem. Then, by the results in [1] and [3] recalled above, K has a strongly unramified quadratic extension with PIB but no NIB, and $\left[r_{1} / 2\right]+r_{2}-1$ strongly unramified quadratic extensions with NIB which are linearly independent over K.

Remark 1. For a number field K satisfying the conditions in the Theorem, the 2 -rank of the ideal class group (in the usual sense) in larger than or equal to $\delta\left(r_{1}, r_{2}\right)=\left[r_{1} / 2\right]+r_{2}$. Ishida [5], the author [2] and Nakano [6, Theorem 2] already constructed infinitely many number fields of degree n for which the $2-$ rank of the ideal class group is larger than $\delta\left(r_{1}, r_{2}\right)$, without imposing any condition on the structure of the rings of integers of the associated unramified quadratic extensions.

Remark 2. In [4, Section 3], we have constructed infinitely many sextic fields K with $\zeta_{3} \in K^{\times}$ each of which has an unramified cubic cyclic extension with PIB but no NIB.
3. Proof of the Theorem. We fix integers n, r_{1} and r_{2} with $n=r_{1}+2 r_{2}$ and $n \geq 3, r_{1} \geq$ $1, r_{2} \geq 1$. We deal with a number field defined by a polynomial of the form

$$
f(X)=\prod_{i=1}^{r_{1}}\left(X-a_{i}\right) \prod_{j=1}^{r_{2}}\left(X^{2}-b_{j} X+c_{j}\right)-2
$$

for some integers a_{i}, b_{j}, c_{j}. We assume that these integers and $f(X)$ satisfy the following five conditions. The first two of them are as follows.
(C1) $\quad a_{i} \equiv 0 \bmod 8\left(1 \leq i \leq r_{1}\right), b_{j} \equiv c_{j} \equiv$ $4 \bmod 8\left(1 \leq j \leq r_{2}\right)$.
(C2) $\quad f(X)$ has r_{1} real roots and $2 r_{2}$ imaginary roots.
We can choose a_{i}, b_{j}, c_{j} satisfying (C2) by imposing the condition:
(C3) $\quad a_{i}<a_{i+1}$ with $a_{i+1}-a_{i}$ sufficiently large $\left(1 \leq i \leq r_{1}-1\right)$, and $b_{j}^{2}-4 c_{j}<0\left(1 \leq j \leq r_{2}\right)$.
We choose and fix $r_{1}+r_{2}-1$ prime numbers $\ell_{I}(2 \leq$ $\left.I \leq r_{1}\right)$ and $\rho_{J}\left(1 \leq J \leq r_{2}\right)$ different from each other such that
(2) $\quad \ell \equiv 5 \bmod 8 \quad$ and,
$2 n \not \equiv 1 \bmod \ell$
with $\ell=\ell_{I}, \rho_{J}$. The last two assumptions on a_{i}, b_{j}, c_{j} are as follows.
(C4) For each $I\left(2 \leq I \leq r_{1}\right)$, the following
congruences hold:

$$
\begin{aligned}
a_{I} & \equiv-1 \quad \bmod \ell_{I} \\
a_{i} & \equiv 0 \quad \bmod \ell_{I}\left(1 \leq i \leq r_{1}, i \neq I\right) \\
b_{j} & \equiv c_{j} \equiv 0 \quad \bmod \ell_{I}\left(1 \leq j \leq r_{2}\right)
\end{aligned}
$$

(C5) For each $J\left(1 \leq J \leq r_{2}\right)$, the following congruences hold:

$$
\begin{aligned}
a_{i} & \equiv 0 \quad \bmod \rho_{J}\left(1 \leq i \leq r_{1}\right), \\
b_{J} & \equiv-1 \quad \bmod \rho_{J}, \\
b_{j} & \equiv 0 \quad \bmod \rho_{J}\left(1 \leq j \leq r_{2}, j \neq J\right), \\
c_{j} & \equiv 0 \quad \bmod \rho_{J}\left(1 \leq j \leq r_{2}\right) .
\end{aligned}
$$

By (C1), $f(X)$ is an Eisenstein polynomial, and hence is irreducible. Let θ be a root of $f(X)$, and $K=\mathbf{Q}(\theta)$. We prove the following:

Proposition. Under the above setting, K satisfies the conditions in the Theorem.

It is clear from (C2) that K has exactly r_{1} real primes divisors. So, we prove that K satisfies the inequalities (1) of the Theorem.
$\mathrm{By}(\mathrm{C} 1)$, the prime number 2 is totally ramified in $K ;(2)=\mathcal{P}^{n}$. Further, it also follows from (C1) and $f(\theta)=0$ that

$$
\left(\theta-a_{i}\right)=\mathcal{P} \quad \text { and } \quad\left(\theta^{2}-b_{j} \theta+c_{j}\right)=\mathcal{P}^{2}
$$

Therefore, the following $r=r_{1}+r_{2}-1$ elements are units of K :

$$
\epsilon_{i}=\frac{\theta-a_{i}}{\theta-a_{1}}, \quad \eta_{j}=\frac{\theta^{2}-b_{j} \theta+c_{j}}{\left(\theta-a_{1}\right)^{2}}
$$

with $2 \leq i \leq r_{1}$ and $1 \leq j \leq r_{2}$. For an element $x \in K^{\times}$, we say that x is totally positive and write $x \gg 0$ when x is positive at all real prime divisors. It follows from the last condition in (C3) that

$$
\begin{equation*}
\eta_{j} \gg 0\left(1 \leq j \leq r_{2}\right) \tag{4}
\end{equation*}
$$

It also follows from (C3) that
(5) $\left\{\begin{aligned} \epsilon_{2 k} \epsilon_{2 k+1} \gg 0(1 \leq k \leq & \left.\left(r_{1}-1\right) / 2\right), \\ & \cdots \text { when } r_{1} \text { is odd, } \\ \epsilon_{2} \gg 0, \epsilon_{2 k-1} \epsilon_{2 k} \gg 0 & \left(2 \leq k \leq r_{1} / 2\right), \\ & \cdots \text { when } r_{1} \text { is even. }\end{aligned}\right.$

This is shown as follows. Assume that r_{1} is odd. Let $\theta_{1}, \theta_{2}, \ldots, \theta_{r_{1}}$ be the r_{1} real roots of $f(X)$ with $\theta_{i}<\theta_{i+1}$. From the conditions in (C3), we see that

$$
\theta_{2 k}<a_{2 k}<a_{2 k+1}<\theta_{2 k+1}\left(1 \leq k \leq \frac{r_{1}-1}{2}\right)
$$

Then, we easily see that $\theta-a_{2 k}$ and $\theta-a_{2 k+1}$ have the same signatures. The assertion (5) follows from
this when r_{1} is odd. When r_{1} is even, it is shown in a similar way.

We see from (C1) that

$$
\left\{\begin{array}{l}
\epsilon_{1} \equiv 1 \quad \bmod 4 \tag{6}\\
\eta_{j} \equiv(1-2 / \theta)^{2} \quad \bmod 4 \\
\eta_{j} \not \equiv 1 \quad \bmod 4, \quad \eta_{j} \eta_{j^{\prime}} \equiv 1 \quad \bmod 4
\end{array}\right.
$$

with $2 \leq i \leq r_{1}$ and $1 \leq j, j^{\prime} \leq r_{2}$.
To prove the Proposition, we have to show the following:

Lemma. A basis of the vector space E / E^{2} over \mathbf{F}_{2} of dimension $r+1=r_{1}+r_{2}$ is given by

$$
\left\{[-1],\left[\epsilon_{i}\right],\left[\eta_{j}\right] \mid 2 \leq i \leq r_{1}, 1 \leq j \leq r_{2}\right\}
$$

Proof. It suffices to show that $r+1$ elements $[-1],\left[\epsilon_{i}\right],\left[\eta_{j}\right]$ are linearly independent over \mathbf{F}_{2}. Assume that

$$
\begin{equation*}
(-1)^{e_{1}} \prod_{i=2}^{r_{1}} \epsilon_{i}^{e_{i}} \prod_{j=1}^{r_{2}} \eta_{j}^{f_{j}} \in E^{2} \tag{7}
\end{equation*}
$$

with $e_{i}, f_{j} \in\{0,1\}$. First, let I be an integer with $2 \leq I \leq r_{1}$, and show $e_{I}=0$. By (C 4), we have

$$
f(X) \equiv X^{n}+X^{n-1}-2 \quad \bmod \ell_{I}
$$

In particular, $f(1) \equiv 0 \bmod \ell_{I}$. Further, we see from (3) that $1 \bmod \ell_{I}$ is not a multiple root of $f(X) \bmod \ell_{I}$. Hence, there exists a prime ideal \mathcal{L}_{I} of K over ℓ_{I} which is of degree one and contains $\theta-1$. Then, reducing the relation (7) modulo \mathcal{L}_{I}, we see that $(-1)^{e_{1}} 2^{e_{I}} \quad \bmod \ell_{I}$ is a square in $\mathbf{F}_{\ell_{I}}^{\times}$from (C4) and the definition of ϵ_{i}, η_{j}. Here, $\mathbf{F}_{\ell}=\mathbf{Z} / \ell \mathbf{Z}$ for a prime number ℓ. Therefore, we obtain $e_{I}=0$ by (2) and the supplementary laws for the quadratic residue symbols. Next, we can show $f_{J}=0\left(1 \leq J \leq r_{2}\right)$ is a similar way using the prime number ρ_{J} and the condition (C5) in place of ℓ_{I} and (C4). Finally, we obtain $e_{1}=0$ from $(-1)^{e_{1}} \in E^{2}$ since $r_{1} \geq 1$.

Proof of the Proposition. It suffices to show that the number field K satisfies the inequalities (1) in the Theorem. First, we deal with the case where r_{1} is odd. By (4), (5) and (6), the classes of the units

$$
\epsilon_{2 k} \epsilon_{2 k+1}, \eta_{1} \eta_{j} \quad\left(1 \leq k \leq \frac{r_{1}-1}{2}, 2 \leq j \leq r_{2}\right)
$$

are elements of $\widetilde{\mathcal{N}}(K)$. Then, by the Lemma, K satisfies the second inequality in (1). By (4) and $(6),\left[\eta_{1}\right] \in \widetilde{\mathcal{E}}(K)$. Assume that $\left[\eta_{1}\right] \in \mathcal{N}(K)$. This implies that $\eta_{1} \equiv \delta^{2} \bmod 4$ for some $\delta \in E$. By the Lemma, the subgroup of E generated by the $r+1$
units $-1, \epsilon_{i}, \eta_{j}$ is of finite index, and the index is odd. Therefore, we obtain

$$
\eta_{1}^{e} \equiv\left(\prod_{i=2}^{r_{1}} \epsilon_{1}^{e_{i}} \prod_{j=1}^{r_{2}} \eta_{j}^{f_{j}}\right)^{2} \quad \bmod 4
$$

for some odd integer e and some integers e_{j}, f_{j}. However, this is impossible because of (6) since e is odd. Therefore, $\left[\eta_{1}\right] \notin \mathcal{N}(K)$, and hence K satisfies the first inequality in (1). Thus, the assertion of the Proposition is proved when r_{1} is odd. When r_{1} is even, we can prove it in a similar wary.

Proof of the Theorem. Assume that we have number fields K_{1}, \ldots, K_{s} satisfying the conditions of the Theorem. Let ℓ be a prime number which splits completely in the composite $K_{1} \cdots K_{s}$ with $\ell \neq \ell_{I}$ and $\ell \neq \rho_{J}$. Let α be an integer such that $\alpha \bmod \ell$ is not a square in $\mathbf{F}_{\ell}^{\times}$. Choose integers a_{i}, b_{j}, c_{j} satisfying (C1),.,$(\mathrm{C} 5)$ and the following congruences:

$$
\begin{aligned}
& a_{i} \equiv 0 \quad \bmod \ell\left(1 \leq i \leq r_{1}\right) \\
& b_{j} \equiv c_{j} \equiv 0 \quad \bmod \ell\left(1 \leq j \leq r_{2}-1\right) \\
& b_{r_{2}} \equiv-2 \alpha^{-(n-1) / 2}, c_{r_{2}} \equiv-\alpha \quad \bmod \ell \\
& \cdots \text { when } r_{1} \text { is odd, } \\
& b_{r_{2}} \equiv 0, c_{r_{2}} \equiv 2 \alpha^{-(n-2) / 2}-\alpha \quad \bmod \ell \\
& \cdots \text { when } r_{1} \text { is even. }
\end{aligned}
$$

Let θ be a root of the polynomial $f(X)$ for the above a_{i}, b_{j}, c_{j}, and $K_{s+1}=\mathbf{Q}(\theta)$. By the Proposition, K_{s+1} satisfies the conditions of the Theorem. We easily see that the remainder in the division of X^{m} by $X^{2}-\alpha$ equals $\alpha^{(m-1) / 2} X$ or $\alpha^{m / 2}$ according as m is odd or even. From this and the above congruences, we see that

$$
f(X) \equiv\left(X^{2}-\alpha\right) g(X) \quad \bmod \ell
$$

for some $g(X) \in \mathbf{Z}[X]$. Therefore, ℓ does not split completely in K_{s+1}, and hence $K_{s+1} \neq K_{1}, \ldots, K_{s}$.

References

[1] Childs, L.: The group of unramified Kummer extensions of prime degree. Proc. London Math. Soc., 35, 407-422 (1977).
[2] Ichimura, H.: On 2-rank of the ideal class groups of totally real number fields. Proc. Japan Acad., 58A, 329-332 (1982).
[3] Ichimura, H.: On power integral bases of unramified cyclic extensions of prime degree (1999) (preprint).
[4] Ichimura, H.: A note on integral bases of unramified cyclic extensions of prime degree (1999) (preprint).
[5] Ishida, M.: On 2-rank of the ideal class groups of algebraic number fields. J. Reine Angew. Math., 273, 165-169 (1975).
[6] Nakano, S.: On the ideal class groups of algebraic number fields. J. Reine Angew. Math., 358, 6175 (1985).
[7] Washington, L.: Introduction to Cyclotomic Fields. 2nd ed., Springer, Berlin-Heidelberg-New York (1996).

[^0]: Partially supported by Grant-in-Aid for Scientific Research (C) (No. 11640041), the Ministry of Education, Science, Sports and Culture of Japan.

 1991 Mathematics Subject Classification. 11R33.

