
78 Proc. Japan Acad., 76, Ser. A (2000) [Vol. 76(A),

A note on unramified quadratic extensions

over algebraic number fields
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Abstract: We construct for each integer n (≥ 3), infinitely many number fields of degree
n each of which has an unramified quadratic extension with a power integral basis but no normal
integral basis.
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1. Introduction. Let L/K be a finite exten-
sion of an algebraic number field K, and OL (resp.
OK) the ring of integers of L (resp. K). One says
that L/K has a power integral basis (PIB for short)
when OL = OK [α] for some α ∈ OL. If L/K is Ga-
lois, it has a normall integral basis (NIB for short)
when OL is free of rank one over the group ring
OK [Gal(L/K)]. Let p be a prime number. Assume
that K contains a primitive p-th root ζp of unity and
that L/K is an unramified cyclic extension of degree
p. Here, L/K is “unramified” when it is unramified
at all finite prime divisors. Then, it is known that
L/K has a PIB if it has a NIB (see Childs [1] and the
author [3]). On the other hand, the converse does not
hold in general. Actually, we give in [4] some exam-
ples of real quadratic fields which has an unramified
quadratic extension with PIB but no NIB. In this
note, we prove that for each integer n ≥ 3, there
exist infinitely many number fields of degree n each
of which has an unramified quadratic extension with
PIB but no NIB. We give a more precise statement
in the next section after introducing some notation.

2. Theorem. Let K be a number field and
E = EK the group of units of K. We denote
by H(K) the subgroup of K×/(K×)2 consisting of
classes [α] (α ∈ K×) such that K(α1/2)/K is unram-
ified (at all finite prime divisors). We put

E(K) := H(K) ∩ E(K×)2/(K×)2,

N (K) := {[ε] ∈ E(K×)2/(K×)2 |
ε ∈ E, ε ≡ 1 mod 4}.
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It is well known (cf. Washington [7, Exercises 9.2,
9.3]) that for a unit ε ∈ E, the extension K(ε1/2)/K
is unramified if and only if

ε ≡ u2 mod 4 for some u ∈ OK .

Therefore, it follows that

N (K) ⊆ E(K) ⊆ H(K).

In [1], Childs proved that for [α] ∈ H(K), the un-
ramified quadratic extension K(α1/2)/K has a NIB
if and only if [α] ∈ N (K). F. Kawamoto, N.
Suwa and the author independently proved that for
[α] ∈ H(K), K(α1/2)/K has a PIB if and only if
[α] ∈ E(K). For a proof of this assertion, see [3].
We say that a finite extension L/K is strongly un-
ramified when it is unramified at all prime divisors
including the infinite ones. Let H̃(K) be the sub-
group of H(K) consisting of classes [α] ∈ H(K) such
that K(α1/2)/K is strongly unramified, and

Ẽ(K) := E(K) ∩ H̃(K),

Ñ (K) := N (K) ∩ H̃(K).

The groups defined above are naturally regarded as
vector spaces over F2 = Z/2Z. For a vector space
M over F2, dim(M) denotes its dimension.

We prove the following:
Theorem. Let n, r1 and r2 be integers with

n = r1 + 2r2 and n ≥ 3, r1 ≥ 1, r2 ≥ 1. Then,
there exist infinitely many number fields K of degree
n each of which has exactly r1 real prime divisors
and satisfies the inequalities

(1)

{
dim(Ẽ(K)/Ñ (K)) ≥ 1,

dim(Ñ (K)) ≥ [r1/2] + r2 − 1.
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Here, [x] denotes the largest integer not exceeding x.
Let K be a number field satisfying the condi-

tions in the Theorem. Then, by the results in [1]
and [3] recalled above, K has a strongly unrami-
fied quadratic extension with PIB but no NIB, and
[r1/2] + r2 − 1 strongly unramified quadratic exten-
sions with NIB which are linearly independent over
K.

Remark 1. For a number field K satisfying
the conditions in the Theorem, the 2–rank of the
ideal class group (in the usual sense) in larger than
or equal to δ(r1, r2) = [r1/2] + r2. Ishida [5], the
author [2] and Nakano [6, Theorem 2] already con-
structed infinitely many number fields of degree n for
which the 2–rank of the ideal class group is larger
than δ(r1, r2), without imposing any condition on
the structure of the rings of integers of the associ-
ated unramified quadratic extensions.

Remark 2. In [4, Section 3], we have con-
structed infinitely many sextic fieldsK with ζ3 ∈ K×

each of which has an unramified cubic cyclic exten-
sion with PIB but no NIB.

3. Proof of the Theorem. We fix integers
n, r1 and r2 with n = r1 + 2r2 and n ≥ 3, r1 ≥
1, r2 ≥ 1. We deal with a number field defined by a
polynomial of the form

f(X) =
r1∏
i=1

(X − ai)
r2∏
j=1

(X2 − bjX + cj)− 2

for some integers ai, bj , cj . We assume that these in-
tegers and f(X) satisfy the following five conditions.
The first two of them are as follows.

(C1) ai ≡ 0 mod 8 (1 ≤ i ≤ r1), bj ≡ cj ≡
4 mod 8 (1 ≤ j ≤ r2).

(C2) f(X) has r1 real roots and 2r2 imaginary
roots.
We can choose ai, bj , cj satisfying (C2) by imposing
the condition:

(C3) ai < ai+1 with ai+1−ai sufficiently large
(1 ≤ i ≤ r1 − 1), and b2j − 4cj < 0 (1 ≤ j ≤ r2).
We choose and fix r1 + r2−1 prime numbers `I (2 ≤
I ≤ r1) and ρJ (1 ≤ J ≤ r2) different from each
other such that

` ≡ 5 mod 8 and,(2)

2n 6≡ 1 mod `(3)

with ` = `I , ρJ . The last two assumptions on
ai, bj , cj are as follows.

(C4) For each I (2 ≤ I ≤ r1), the following

congruences hold:

aI ≡ −1 mod `I ,

ai ≡ 0 mod `I (1 ≤ i ≤ r1, i 6= I),

bj ≡ cj ≡ 0 mod `I (1 ≤ j ≤ r2).

(C5) For each J (1 ≤ J ≤ r2), the following
congruences hold:

ai ≡ 0 mod ρJ (1 ≤ i ≤ r1),

bJ ≡ −1 mod ρJ ,

bj ≡ 0 mod ρJ (1 ≤ j ≤ r2, j 6= J),

cj ≡ 0 mod ρJ (1 ≤ j ≤ r2).

By (C1), f(X) is an Eisenstein polynomial, and
hence is irreducible. Let θ be a root of f(X), and
K = Q(θ). We prove the following:

Proposition. Under the above setting, K sat-
isfies the conditions in the Theorem.

It is clear from (C2) that K has exactly r1 real
primes divisors. So, we prove that K satisfies the
inequalities (1) of the Theorem.

By (C1), the prime number 2 is totally ramified
in K; (2) = Pn. Further, it also follows from (C1)
and f(θ) = 0 that

(θ − ai) = P and (θ2 − bjθ + cj) = P2.

Therefore, the following r = r1 + r2− 1 elements are
units of K:

εi =
θ − ai
θ − a1

, ηj =
θ2 − bjθ + cj

(θ − a1)2

with 2 ≤ i ≤ r1 and 1 ≤ j ≤ r2. For an element
x ∈ K×, we say that x is totally positive and write
x � 0 when x is positive at all real prime divisors.
It follows from the last condition in (C3) that

(4) ηj � 0 (1 ≤ j ≤ r2).

It also follows from (C3) that

(5)


ε2kε2k+1 � 0 (1 ≤ k ≤ (r1 − 1)/2),

· · · when r1 is odd,
ε2 � 0, ε2k−1ε2k � 0 (2 ≤ k ≤ r1/2),

· · · when r1 is even.

This is shown as follows. Assume that r1 is odd.
Let θ1, θ2, . . . , θr1 be the r1 real roots of f(X) with
θi < θi+1. From the conditions in (C3), we see that

θ2k < a2k < a2k+1 < θ2k+1

(
1 ≤ k ≤ r1 − 1

2

)
.

Then, we easily see that θ − a2k and θ − a2k+1 have
the same signatures. The assertion (5) follows from
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this when r1 is odd. When r1 is even, it is shown in
a similar way.

We see from (C1) that

(6)


ε1 ≡ 1 mod 4,
ηj ≡ (1− 2/θ)2 mod 4,
ηj 6≡ 1 mod 4, ηjηj′ ≡ 1 mod 4

with 2 ≤ i ≤ r1 and 1 ≤ j, j′ ≤ r2.
To prove the Proposition, we have to show the

following:
Lemma. A basis of the vector space E/E2 over

F2 of dimension r + 1 = r1 + r2 is given by

{[−1], [εi], [ηj ] | 2 ≤ i ≤ r1, 1 ≤ j ≤ r2}.

Proof. It suffices to show that r + 1 elements
[−1], [εi], [ηj ] are linearly independent over F2. As-
sume that

(7) (−1)e1
r1∏
i=2

εeii

r2∏
j=1

η
fj
j ∈ E2

with ei, fj ∈ {0, 1}. First, let I be an integer with
2 ≤ I ≤ r1, and show eI = 0. By (C4), we have

f(X) ≡ Xn +Xn−1 − 2 mod `I .

In particular, f(1) ≡ 0 mod `I . Further, we see
from (3) that 1 mod `I is not a multiple root of
f(X) mod `I . Hence, there exists a prime ideal LI
of K over `I which is of degree one and contains θ−1.
Then, reducing the relation (7) modulo LI , we see
that (−1)e12eI mod `I is a square in F×`I from (C4)
and the definition of εi, ηj . Here, F` = Z/`Z for a
prime number `. Therefore, we obtain eI = 0 by (2)
and the supplementary laws for the quadratic residue
symbols. Next, we can show fJ = 0 (1 ≤ J ≤ r2)
is a similar way using the prime number ρJ and the
condition (C5) in place of `I and (C4). Finally, we
obtain e1 = 0 from (−1)e1 ∈ E2 since r1 ≥ 1.

Proof of the Proposition. It suffices to
show that the number field K satisfies the inequali-
ties (1) in the Theorem. First, we deal with the case
where r1 is odd. By (4), (5) and (6), the classes of
the units

ε2kε2k+1, η1ηj

(
1 ≤ k ≤ r1 − 1

2
, 2 ≤ j ≤ r2

)
are elements of Ñ (K). Then, by the Lemma, K
satisfies the second inequality in (1). By (4) and
(6), [η1] ∈ Ẽ(K). Assume that [η1] ∈ N (K). This
implies that η1 ≡ δ2 mod 4 for some δ ∈ E. By the
Lemma, the subgroup of E generated by the r + 1

units −1, εi, ηj is of finite index, and the index is
odd. Therefore, we obtain

ηe1 ≡
( r1∏
i=2

εei1

r2∏
j=1

η
fj
j

)2

mod 4

for some odd integer e and some integers ej , fj . How-
ever, this is impossible because of (6) since e is odd.
Therefore, [η1] /∈ N (K), and hence K satisfies the
first inequality in (1). Thus, the assertion of the
Proposition is proved when r1 is odd. When r1 is
even, we can prove it in a similar wary.

Proof of the Theorem. Assume that we
have number fields K1, . . . ,Ks satisfying the con-
ditions of the Theorem. Let ` be a prime number
which splits completely in the composite K1 · · ·Ks

with ` 6= `I and ` 6= ρJ . Let α be an integer such
that α mod ` is not a square in F×` . Choose
integers ai, bj , cj satisfying (C1), . . . , (C5) and the
following congruences:

ai ≡ 0 mod ` (1 ≤ i ≤ r1),

bj ≡ cj ≡ 0 mod ` (1 ≤ j ≤ r2 − 1),

br2 ≡ −2α−(n−1)/2, cr2 ≡ −α mod `,

· · · when r1 is odd,

br2 ≡ 0, cr2 ≡ 2α−(n−2)/2 − α mod `,

· · · when r1 is even.

Let θ be a root of the polynomial f(X) for the above
ai, bj , cj , and Ks+1 = Q(θ). By the Proposition,
Ks+1 satisfies the conditions of the Theorem. We
easily see that the remainder in the division of Xm

by X2−α equals α(m−1)/2X or αm/2 according as m
is odd or even. From this and the above congruences,
we see that

f(X) ≡ (X2 − α)g(X) mod `

for some g(X) ∈ Z[X]. Therefore, ` does not split
completely in Ks+1, and hence Ks+1 6= K1, . . . ,Ks.
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