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On certain cohomology sets attached to Riemann surfaces

By Takashi Ono

Department of Mathematics, Johns Hopkins University, Baltimore, Maryland, 21218-2689, U.S.A.

(Communicated by Shokichi Iyanaga, m. j. a., Sept. 12, 2000)

Abstract: Let G be the principal congruence subgroup of level N ≥ 3 and g be the group
generated by the involution z 7→ −1/z of the upper half plane. We shall determine the cardinality
of the (first) cohomology set H(g,G) in terms of the binary form x2 + y2 mod N .
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1. Introduction. Let X be a Riemann sur-
face and X̃ be its universal covering space. Then
X is the quotient of X̃ by a group G of automor-
phisms of X̃ acting discretely and without fixed
points: X = G \ X̃, G = π1(X). Consider a sub-
group g of Aut(X̃) which normalizes G. Thus we
can speak of the (first) cohomology set H(g, π1(X)).
In this paper, we shall determine the cardinality of
the set for the very special case where X̃ = H, the
upper half plane, G = Γ(N), N ≥ 3, and g = the
group generated by the involution z 7→ −1/z of H.
It turns out that

]H(g,Γ(N)) =
1
2
]SO2(Z/NZ),(1.1)

where SO2(Z/NZ) = the special orthogonal group
for x2 + y2 over Z/NZ. If, in particular, N = p, an
odd prime, then we have

]H(g,Γ(p)) =
1
2

(
p− (−1)(p−1)/2

)
.(1.2)

2. Generality. In general, let g, G be sub-
groups of a group such that g normalizes G. We shall
write the action of g on G by as = sas−1, s ∈ g,
a ∈ G. Denote by Z(g,G) the set of all cocycles of g
in G:

Z(g,G)(2.1)

= {f : g → G (maps); f(st) = f(s)f(t)s, s, t ∈ g}.

The equivalence f ∼ f ′, f, f ′ ∈ Z(g,G) is defined by

f ∼ f ′ ⇐⇒ f ′(s) = a−1f(s)as, a ∈ G, s ∈ g.(2.2)

The cohomology set is then defined by

H(g,G) = Z(g,G)/ ∼ .(2.3)
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Now suppose that g = 〈s〉 with s2 = 1. Then a
cocycle f is entirely determined by the value a = f(s)
with aas = 1, we may set

Z(g,G) = {a ∈ G; aas = 1},(2.4)

H(g,G) = Z(g,G)/ ∼(2.5)

where a ∼ a′ ⇐⇒ a′ = c−1acs, c ∈ G.

3. Γ(N). For an integer N ≥ 3, put

Γ(N) = {A ∈ SL2(Z);A ≡ I mod N}.(3.1)

Let S be the matrix
(

0 −1
1 0

)
∈ SL2(Z). Note that S

is of order four, whereas its image s in PSL2(R) =
Aut(H) is of order two. On the other hand, since
N ≥ 3, the group (3.1) is identified with its image in
Aut(H). In accordance with notation in 2, we set

g = 〈s〉, G = Γ(N).(3.2)

Clearly g, G are subgroups of Aut(H), s2 = 1, g
normalizes G and g ∩ G = 1. For a matrix A =(
a b

c d

)
∈ SL2(Z), we put

As = SAS−1 =
(
d −c
−b a

)
= tA−1.(3.3)

Then, from (2.4), (2.5), (3.2) and (3.3), it follows
that

Z(g,G) = {A ∈ Γ(N), tA = A},(3.4)

H(g,G) = Z(g,G)/ ∼(3.5)

where A ∼ A′ ⇐⇒ A′ = tTAT, T ∈ G.

In other words, the set (3.4) of cocycles is nothing
else than the set of symmetric matrices in Γ(N) and
the equivalence in (3.5) is a refinement of the ordi-
nary congruence of integral quadratic forms. Having
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these in mind, we shall modify our notation as fol-
lows:

Z(N) = Z(g,G)(3.6)

=
{
A =

(
a b

b c

)
, a ≡ c ≡ 1,

b ≡ 0 mod N, (2b)2 − 4ac = −4
}
,

A ∼ A′, A,A′ ∈ Z(N)(3.7)

⇐⇒ A′ = tTAT, T ∈ Γ(N).

Furthermore, in view of theory of integral quadratic
forms, we shall split Z(N) into two parts Z+(N) and
Z−(N):

Z+(N) =
{
A =

(
a b

b c

)
∈ Z(N), a > 0

}
,(3.8)

Z−(N) =
{
A =

(
a b

b c

)
∈ Z(N), a < 0

}
.(3.9)

Since a matrix in Z+(N) is not equivalent to one in
Z−(N) in the sense of (3.5), we have the following
splitting of cohomology set:

H(g,G) = Z(N)/ ∼
= H(N) = H+(N) +H−(N)

H+(N) = Z+(N)/ ∼,
H−(N) = Z−(N)/ ∼ .

(3.10)

Hence our problem of counting ]H(g,G) is reduced
to that for ]H+(N) and ]H−(N) respectively. We
shall use the symbol ≈ for ordinary congruence of
integral matrices:

A ≈ A′ ⇐⇒ A′ = tUAU, U ∈ SL2(Z).(3.11)

Let R be a complete set of representatives of SL2(Z)
modulo Γ(N) : R = SL2(Z)/Γ(N) = SL2(Z/NZ).
Now take a matrix A ∈ Z+(N). Since the binary
form corresponding to A is primitive positive defi-
nite with discriminant −4, we have A ≈ I and so
there is a matrix U ∈ SL2(Z) such that A = tUU by
(3.11). If we write U = RT , T ∈ Γ(N), R ∈ R, we
have A = tT (tRR)T ∼ tRR. Note that tRR is sym-

metric, positive and ≡ I mod N , i.e., an element
of Z+(N). Next, take a matrix A ∈ Z−(N). Then
−A is positive with discriminant −4, and so −A ≈ I,
hence −A = tUU = tT (tRR)T as above, and we have
A ∼ −tRR, R ∈ R. Summarizing, we get, for ε = ±,

A ∼ εtRR, for some R ∈ R, for A ∈ Zε(N).(3.12)

To complete the proof of (1.1), in view of (3.12),
it remains to clarify the relation between R and R′

when tRR ∼ tR′R′. First of all, one verifies easily the
following

For W ∈ SL2(Z), tWW = I(3.13)

⇐⇒W = 〈S〉, S =
(

0 −1
1 0

)
.

Next, we have
tRR ∼ tR′R′ ⇐⇒ tR′R′ = tT tRRT, T ∈ Γ(N)

⇐⇒ t(RTR′−1)(RTR′−1) = I

(3.13)⇐⇒ RTR′−1 = Si(3.14)

⇐⇒ R′ = SjRT

⇐⇒ R′ = SjT ′R, T ′ ∈ Γ(N).

If we set Γ∗(N) = 〈S〉Γ(N), then (3.14) means that
tRR ∼ tR′R′ ⇐⇒ R ≡ R′ mod Γ∗(N).(3.15)

Since N ≥ 3, one sees at once that [Γ∗(N) : Γ(N)] =
4. From (3.10), (3.12) and (3.15) we obtain

]Hε(N) = ](SO2(Z/NZ))/4, ε = ±

and hence

(1.1) ]H(N) =
1
2
](SO2(Z/NZ)).

Added in proof. As Prof. H. Wada pointed
out the argument after line 6, p. 117 is invalid when
N ≡ 0, mod 4, because the set Z−(N) is empty. It
is easy to check that
tXX ≡ −I mod N is solvable ⇐⇒ N 6≡ 0 mod 4.

Hence, in case N ≡ 0 mod 4, the number in (1.1)
should be reduced to its half.




