On certain cohomology sets attached to Riemann surfaces

By Takashi Ono

Department of Mathematics, Johns Hopkins University, Baltimore, Maryland, 21218-2689, U.S.A.
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 2000)

Abstract

Let G be the principal congruence subgroup of level $N \geq 3$ and g be the group generated by the involution $z \mapsto-1 / z$ of the upper half plane. We shall determine the cardinality of the (first) cohomology set $H(g, G)$ in terms of the binary form $x^{2}+y^{2} \bmod N$.

Key words: The principal congruence subgroup of level N; the involution; cohomology sets; binary quadratic forms; orthogonal groups.

1. Introduction. Let X be a Riemann surface and \widetilde{X} be its universal covering space. Then X is the quotient of \widetilde{X} by a group G of automorphisms of \widetilde{X} acting discretely and without fixed points: $X=G \backslash \widetilde{X}, G=\pi_{1}(X)$. Consider a subgroup g of $\operatorname{Aut}(\widetilde{X})$ which normalizes G. Thus we can speak of the (first) cohomology set $H\left(g, \pi_{1}(X)\right)$. In this paper, we shall determine the cardinality of the set for the very special case where $\widetilde{X}=\mathcal{H}$, the upper half plane, $G=\Gamma(N), N \geq 3$, and $g=$ the group generated by the involution $z \mapsto-1 / z$ of \mathcal{H}. It turns out that

$$
\begin{equation*}
\sharp H(g, \Gamma(N))=\frac{1}{2} \sharp \mathrm{SO}_{2}(\mathbf{Z} / N \mathbf{Z}), \tag{1.1}
\end{equation*}
$$

where $\mathrm{SO}_{2}(\mathbf{Z} / N \mathbf{Z})=$ the special orthogonal group for $x^{2}+y^{2}$ over $\mathbf{Z} / N \mathbf{Z}$. If, in particular, $N=p$, an odd prime, then we have

$$
\begin{equation*}
\sharp H(g, \Gamma(p))=\frac{1}{2}\left(p-(-1)^{(p-1) / 2}\right) \text {. } \tag{1.2}
\end{equation*}
$$

2. Generality. In general, let g, G be subgroups of a group such that g normalizes G. We shall write the action of g on G by $a^{s}=s a s^{-1}, s \in g$, $a \in G$. Denote by $Z(g, G)$ the set of all cocycles of g in G :

$$
\begin{aligned}
& \text { (2.1) } \quad Z(g, G) \\
& =\left\{f: g \rightarrow G(\text { maps }) ; f(s t)=f(s) f(t)^{s}, s, t \in g\right\}
\end{aligned}
$$

The equivalence $f \sim f^{\prime}, f, f^{\prime} \in Z(g, G)$ is defined by
(2.2) $f \sim f^{\prime} \Longleftrightarrow f^{\prime}(s)=a^{-1} f(s) a^{s}, a \in G, s \in g$.

The cohomology set is then defined by

$$
\begin{equation*}
H(g, G)=Z(g, G) / \sim \tag{2.3}
\end{equation*}
$$

[^0]Now suppose that $g=\langle s\rangle$ with $s^{2}=1$. Then a cocycle f is entirely determined by the value $a=f(s)$ with $a a^{s}=1$, we may set

$$
\begin{equation*}
Z(g, G)=\left\{a \in G ; a a^{s}=1\right\} \tag{2.4}
\end{equation*}
$$

$$
\begin{align*}
& H(g, G)=Z(g, G) / \sim \tag{2.5}\\
& \quad \text { where } \quad a \sim a^{\prime} \Longleftrightarrow a^{\prime}=c^{-1} a c^{s}, c \in G
\end{align*}
$$

3. $\boldsymbol{\Gamma}(\boldsymbol{N})$. For an integer $N \geq 3$, put
(3.1) $\quad \Gamma(N)=\left\{A \in \mathrm{SL}_{2}(\mathbf{Z}) ; A \equiv I \quad \bmod N\right\}$.

Let S be the matrix $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z})$. Note that S is of order four, whereas its image s in $\mathrm{PSL}_{2}(\mathbf{R})=$ $\operatorname{Aut}(\mathcal{H})$ is of order two. On the other hand, since $N \geq 3$, the group (3.1) is identified with its image in $\operatorname{Aut}(\mathcal{H})$. In accordance with notation in 2, we set

$$
\begin{equation*}
g=\langle s\rangle, \quad G=\Gamma(N) \tag{3.2}
\end{equation*}
$$

Clearly g, G are subgroups of $\operatorname{Aut}(\mathcal{H}), s^{2}=1, g$ normalizes G and $g \cap G=1$. For a matrix $A=$ $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z})$, we put

$$
A^{s}=S A S^{-1}=\left(\begin{array}{cc}
d & -c \tag{3.3}\\
-b & a
\end{array}\right)={ }^{t} A^{-1}
$$

Then, from (2.4), (2.5), (3.2) and (3.3), it follows that
(3.4) $Z(g, G)=\left\{A \in \Gamma(N),{ }^{t} A=A\right\}$,
(3.5) $H(g, G)=Z(g, G) / \sim$
where $\quad A \sim A^{\prime} \Longleftrightarrow A^{\prime}={ }^{t} T A T, T \in G$.
In other words, the set (3.4) of cocycles is nothing else than the set of symmetric matrices in $\Gamma(N)$ and the equivalence in (3.5) is a refinement of the ordinary congruence of integral quadratic forms. Having
these in mind, we shall modify our notation as follows:
(3.6) $Z(N)=Z(g, G)$

$$
\begin{aligned}
&=\left\{A=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right), a \equiv c \equiv 1\right. \\
&\left.b \equiv 0 \quad \bmod N,(2 b)^{2}-4 a c=-4\right\}
\end{aligned}
$$

(3.7) $A \sim A^{\prime}, A, A^{\prime} \in Z(N)$

$$
\Longleftrightarrow A^{\prime}={ }^{t} T A T, T \in \Gamma(N) .
$$

Furthermore, in view of theory of integral quadratic forms, we shall split $Z(N)$ into two parts $Z^{+}(N)$ and $Z^{-}(N)$:

$$
\begin{align*}
& Z^{+}(N)=\left\{A=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) \in Z(N), a>0\right\}, \tag{3.8}\\
& Z^{-}(N)=\left\{A=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) \in Z(N), a<0\right\} . \tag{3.9}
\end{align*}
$$

Since a matrix in $Z^{+}(N)$ is not equivalent to one in $Z^{-}(N)$ in the sense of (3.5), we have the following splitting of cohomology set:

$$
\begin{align*}
H(g, G) & =Z(N) / \sim \\
& =H(N)=H^{+}(N)+H^{-}(N) \tag{3.10}\\
H^{+}(N) & =Z^{+}(N) / \sim \\
H^{-}(N) & =Z^{-}(N) / \sim
\end{align*}
$$

Hence our problem of counting $\sharp H(g, G)$ is reduced to that for $\sharp H^{+}(N)$ and $\sharp H^{-}(N)$ respectively. We shall use the symbol \approx for ordinary congruence of integral matrices:

$$
\begin{equation*}
A \approx A^{\prime} \Longleftrightarrow A^{\prime}={ }^{t} U A U, U \in \mathrm{SL}_{2}(\mathbf{Z}) \tag{3.11}
\end{equation*}
$$

Let \mathcal{R} be a complete set of representatives of $\mathrm{SL}_{2}(\mathbf{Z})$ modulo $\Gamma(N): \mathcal{R}=\mathrm{SL}_{2}(\mathbf{Z}) / \Gamma(N)=\mathrm{SL}_{2}(\mathbf{Z} / N \mathbf{Z})$. Now take a matrix $A \in Z^{+}(N)$. Since the binary form corresponding to A is primitive positive definite with discriminant -4 , we have $A \approx I$ and so there is a matrix $U \in \mathrm{SL}_{2}(\mathbf{Z})$ such that $A={ }^{t} U U$ by (3.11). If we write $U=R T, T \in \Gamma(N), R \in \mathcal{R}$, we have $A={ }^{t} T\left({ }^{t} R R\right) T \sim{ }^{t} R R$. Note that ${ }^{t} R R$ is sym-
metric, positive and $\equiv I \bmod N$, i.e., an element of $Z^{+}(N)$. Next, take a matrix $A \in Z^{-}(N)$. Then $-A$ is positive with discriminant -4 , and so $-A \approx I$, hence $-A={ }^{t} U U={ }^{t} T\left({ }^{t} R R\right) T$ as above, and we have $A \sim-{ }^{t} R R, R \in \mathcal{R}$. Summarizing, we get, for $\varepsilon= \pm$, (3.12) $A \sim \varepsilon^{t} R R$, for some $R \in \mathcal{R}$, for $A \in Z^{\varepsilon}(N)$.

To complete the proof of (1.1), in view of (3.12), it remains to clarify the relation between R and R^{\prime} when ${ }^{t} R R \sim{ }^{t} R^{\prime} R^{\prime}$. First of all, one verifies easily the following

$$
\begin{align*}
& \text { For } W \in \mathrm{SL}_{2}(\mathbf{Z}),{ }^{t} W W=I \tag{3.13}\\
& \Longleftrightarrow W=\langle S\rangle, S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \text {. }
\end{align*}
$$

Next, we have

$$
\begin{aligned}
{ }^{t} R R \sim^{t} R^{\prime} R^{\prime} & \Longleftrightarrow{ }^{t} R^{\prime} R^{\prime}={ }^{t} T^{t} R R T, T \in \Gamma(N) \\
& \Longleftrightarrow{ }^{t}\left(R T R^{\prime-1}\right)\left(R T R^{\prime-1}\right)=I \\
& \Longleftrightarrow{ }^{(3.13)} \\
& \Longleftrightarrow R^{\prime-1}=S^{i} \\
& \Longleftrightarrow R^{\prime}=S^{j} R T \\
& \Longleftrightarrow R^{\prime}=S^{j} T^{\prime} R, T^{\prime} \in \Gamma(N) .
\end{aligned}
$$

If we set $\Gamma^{*}(N)=\langle S\rangle \Gamma(N)$, then (3.14) means that
(3.15) ${ }^{t} R R \sim{ }^{t} R^{\prime} R^{\prime} \Longleftrightarrow R \equiv R^{\prime} \bmod \Gamma^{*}(N)$.

Since $N \geq 3$, one sees at once that $\left[\Gamma^{*}(N): \Gamma(N)\right]=$ 4. From (3.10), (3.12) and (3.15) we obtain

$$
\sharp H^{\varepsilon}(N)=\sharp\left(\mathrm{SO}_{2}(\mathbf{Z} / N \mathbf{Z})\right) / 4, \quad \varepsilon= \pm
$$

and hence

$$
\begin{equation*}
\sharp H(N)=\frac{1}{2} \sharp\left(\mathrm{SO}_{2}(\mathbf{Z} / N \mathbf{Z})\right) . \tag{1.1}
\end{equation*}
$$

Added in proof. As Prof. H. Wada pointed out the argument after line 6, p. 117 is invalid when $N \equiv 0, \bmod 4$, because the set $Z^{-}(N)$ is empty. It is easy to check that
${ }^{t} X X \equiv-I \quad \bmod N$ is solvable $\Longleftrightarrow N \not \equiv 0 \bmod 4$.
Hence, in case $N \equiv 0 \bmod 4$, the number in (1.1) should be reduced to its half.

[^0]: 2000 Mathematics Subject Classification. 11F75.

