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On generic polynomials for the modular 2-groups
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Abstract: We construct a generic polynomial for Mod2n+2 , the modular 2-group of order
2n+2, with two parameters over the 2n-th cyclotomic field k. Our construction is based on an
explicit answer for linear Noether’s problem. This polynomial, which has a remarkably simple
expression, gives every Mod2n+2-extension L/K with K ⊃ k, ]K = ∞ by specialization of the
parameters. Moreover, we derive a new generic polynomial for the cyclic group of order 2n+1 from
our construction.
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1. Introduction. Let n be a positive inte-
ger and k be a field whose characteristic is not two.
We assume that the field k contains ζ, a primitive
2n-th root of unity. Define α and β to be two k-
automorphisms of k(x1, x2), a rational function field
over k with two variables x1 and x2, by the following{

α(x1) = x2,

α(x2) = ζx1,
and

{
β(x1) = x1,

β(x2) = −x2.
(1)

Let G be a subgroup of Autk k(x1, x2) generated by
α and β. This group is isomorphic to

Mod2n+2 := 〈a, b | a2n+1
= b2 = 1, ab = ba1+2n

〉,(2)

the modular 2-group of order 2n+2.
In this paper, we construct a polynomial

Fn(t1, t2;X) ∈ k(t1, t2)[X] where t1, t2 are indepen-
dent parameters, which has the following properties:

1. Fn(t1, t2;X) is monic and has the Galois group
Mod2n+2 over k(t1, t2),

2. for every Mod2n+2-extension L/K with K ⊃ k

and ]K = ∞, there exist a1, a2 ∈ K such that
L is the splitting field of Fn(a1, a2;X) ∈ K[X]
over K.
The polynomial satisfying these properties is

called k-generic for Mod2n+2 . It is an important
problem for inverse Galois theory to construct ex-
plicit expressions for generic polynomials.
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∗) We call an element f ∈ k(x1, x2) homogeneous of de-

gree d if it can be written as f = g/h with g, h ∈ k[x1, x2]

homogeneous and deg g − deg h = d.

2. Generic Mod2n+2-polynomial. We first
consider the G-extension k(x1, x2)/k(x1, x2)G and
find a generating set of k(x1, x2)G over k. Define S to
be the scalar subgroup of the G-action on k(x1, x2),
i.e.,

S :=
{

τ ∈ G

∣∣∣∣ τ

(
x1

x2

)
=

x1

x2

}
C G.(3)

Lemma 1. We have S = 〈α2〉 and ]S = 2n.
Proof. From G = {α2j , α2j+1, α2jβ, α2j+1β |

0 ≤ j ≤ 2n−1}, the assertion is checked immediately.

The quotient group G/S is isomorphic to
V4 := (Z/2Z)⊕2, hence k(x1/x2)/k(x1/x2)G is a V4-
extension. By Lüroth’s theorem, k(x1/x2)G is purely
transcendental over k.

Proposition 2. The invariant field k(x1/x2)G

is generated over k by

η :=
ζx4

1 + ζ−1x4
2

(x1x2)2
.(4)

Proof. Obviously we have η ∈ k(x1/x2)G and
[k(x1/x2) : k(η)] ≥ ]V4 = 4. On the other hand,
x1/x2 is a root of a biquadratic equation X4 −
ζ−1ηX2 + ζ−2 = 0. Hence we obtain [k(x1/x2) :
k(η)] ≤ 4. It follows that k(x1/x2)G = k(η).

From [3, §1.1], every homogeneous rational
function∗) in k(x1, x2)G of degree ]S = 2n generates
the invariant field k(x1, x2)G over k(x1/x2)G = k(η).
Here, we choose as such function

θ :=
(x1x2)2

n

x2n

1 + x2n

2

(5)
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so that k(x1, x2)G = k(η, θ).
Since G is irreducible over k by regarding the

inclusion G ↪→ Autk k(x1, x2) as a linear repre-
sentation, we obtain k(x1, x2) = k(x1, x2)G(R) =
k(x1, x2)G(x1), where

R := OrbG(x1) = {ζjx1, ζ
jx2 | 0 ≤ j ≤ 2n − 1}.(6)

Hence the minimal polynomial of x1 over k(x1, x2)G

is ϕ(X) :=
∏

x∈R(X − x) (cf. [6, Chap. 3]), and we
have

ϕ(X) = X2n+1
− (x2n

1 + x2n

2 )X2n

+ (x1x2)2
n

.(7)

We next give the expression of ϕ(X) as a polynomial
over k(η, θ).

Lemma 3. Define a sequance {Ej}∞j=1 by
E1 := η and Ej+1 := E2

j − 2. Then we have

Ej =
ζ2j−1

x2j+1

1 + ζ−2j−1
x2j+1

2

(x1x2)2
j .(8)

Proof. This follows by mathematical induc-
tion.

Proposition 4. The coefficients of ϕ(X) have
the following expressions:

x2n

1 + x2n

2 = (2− En)θ,(9)

(x1x2)2
n

= (2− En)θ2.(10)

Proof. From ζ2n−1
= −1, we have

En = −x2n+1

1 + x2n+1

2

(x1x2)2
n .(11)

Hence we obtain

2− En =
(x2n

1 + x2n

2 )2

(x1x2)2
n .(12)

One can derive (9) and (10) from this.
From Lemma 3, we obtain

En = (· · · ((η 2 − 2)2 − 2)2 · · · − 2)2 − 2︸ ︷︷ ︸
square arises n−1 times

.(13)

Hence we have

En = Φ+
2n+1(η),(14)

where Φ+
2n+1(X) is the minimal polynomial of

2 cos(2π/2n+1) over Q.
By regarding η and θ as new variables t1 and t2

in ϕ(X), we see that

F (t1, t2;X) := X2n+1
+ (Φ+

2n+1(t1)− 2)t2X2n

(15)

− (Φ+
2n+1(t1)− 2)t22

gives a Mod2n+2-extension over k(t1, t2).

Remark. For any integer m ≥ 1, we know the
following identity in Z[X, Y ]:

Xm + Y m(16)

=
[m/2]∑
j=0

B(m, j)(−XY )j(X + Y )m−2j ,

where B(m, j) :=
(
m−j−1

j−1

)
+

(
m−j

j

)
and [ · ] is the

Gauß symbol. By using this, we have an explicit
expression of Φ+

2n+1(t1) for n ≥ 2;

Φ+
2n+1(t1) =

2n−2∑
j=0

(−1)jB(2n−1, j)t2
n−1−2j

1 .(17)

By the following theorem, this polynomial is
generic over k:

Theorem (Kemper and Mattig cf. [4, The-
orem 7]). Let k(x1, . . . , xm) be a rational func-
tion field over an arbitrary field k and G be a fi-
nite linear subgroup of Autk k(x1, . . . , xm). And let
M ⊂ k(x1, . . . , xm) be a finite G-stable subset with
k(x1, . . . , xm) = k(x1, . . . , xm)G(M). Suppose that
the invariant field k(x1, . . . , xm)G is purely transcen-
dental over k and isomorphic to k(t1, . . . , tm). By
regarding

∏
y∈M(X − y) ∈ k(x1, . . . , xm)G[X] as a

polynomial over k(t1, . . . , tm), this polynomial is k-
generic for G.

We thus have the following
Theorem 5. The polynomial F (t1, t2;X) is

k-generic for Mod2n+2 .
Remark. For an even integer N , we define

“modular type” finite group Mod4N of order 4N by

Mod4N := 〈a, b | a2N = b2 = 1, ab = ba1+N 〉,

if N = 2n(2m − 1) (m ≥ 1). This generalizes the
definition of Mod2n+2 , and we have

Mod4N
∼= Mod2n+2 ⊕Z/(2m− 1)Z.

In addition to the assumption for k, suppose that
the characteristic of k is prime to 2m− 1 and that k

contains µ + µ−1, where µ is a primitive (2m− 1)-th
root of unity. Then there exists a k-generic poly-
nomial for Z/(2m− 1)Z with one parameter asising
from a linear Noether extension (cf. [1, 5]). Hence
we can construct a k-generic polynomial for Mod4N

with three parameters.
3. Generic cyclic polynomial. Let

C2n+1 be the cyclic group of order 2n+1. A
Q(cos(2π/2n+1))-generic C2n+1-polynomial is given
explicitly by [2, Theorem 1]. This result corresponds
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to a “degree-two descended” Kummer theory whose
base field is descended to the maximal real subfield of
the cyclotomic field. In the previous section, we have
constructed a Q(exp(2π

√
−1/2n))-generic Mod2n+2-

polynomial. Since Mod2n+2 has a cyclic subgroup of
order 2n+1, we can construct a Q(exp(2π

√
−1/2n))-

generic C2n+1-polynomial. This gives a new “degree-
two descended” Kummer theory.

Theorem 6. The polynomial F (ζt21−2, t2;X)
is k-generic for C2n+1 .

Proof. A subgroup H := 〈α〉 of G is cyclic
of order 2n+1. From Lemma 1, there exists λ ∈
k(x1/x2)H such that k(x1, x2)H = k(λ, θ) and we
can choose

λ :=
x2

1 + ζ−1x2
2

x1x2
.(18)

Then we have

η = ζλ2 − 2.(19)

This completes the proof.
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