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Abstract:

We construct a generic polynomial for Modgn+2, the modular 2-group of order

2"*2 with two parameters over the 2"-th cyclotomic field k. Our construction is based on an
explicit answer for linear Noether’s problem. This polynomial, which has a remarkably simple
expression, gives every Modyn+2-extension L/K with K D k, K = oo by specialization of the

parameters. Moreover, we derive a new generic polynomial for the cyclic group of order 2% from

our construction.
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1. Introduction. Let n be a positive inte-
ger and k be a field whose characteristic is not two.
We assume that the field k& contains {, a primitive
2"-th root of unity. Define o and 3 to be two k-
automorphisms of k(x1,xs), a rational function field
over k with two variables x1 and x5, by the following

(1) {O&(Il) = T2, and {/B(‘Tl) =,
OA(IZZQ) = Cxla /B($2) = —Z9.

Let G be a subgroup of Auty k(z1,2z2) generated by
« and (. This group is isomorphic to

2'rL+1

(2) Modyusa = {a,b] 0™ = 8% = 1,ab = ba**"),

the modular 2-group of order 27+2.

In this paper, we construct a polynomial
F,(t1,t0; X) € k(t1,t2)[X] where t1,t2 are indepen-
dent parameters, which has the following properties:

1. Fy,(t1,t2; X) is monic and has the Galois group

Modgn+2 over k(t1,ts2),

2. for every Modyn+z-extension L/K with K D k
and K = oo, there exist a;,as € K such that

L is the splitting field of F, (a1, a2; X) € K[X]

over K.

The polynomial satisfying these properties is
called k-generic for Modgn+2. It is an important
problem for inverse Galois theory to construct ex-
plicit expressions for generic polynomials.
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*)  We call an element f € k(z1,x2) homogeneous of de-
gree d if it can be written as f = g/h with g,h € k[z1,z2]
homogeneous and deg g — degh = d.
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2. Generic Mod,n+z2-polynomial. We first
consider the G-extension k(z1,z2)/k(x1,72)¢ and
find a generating set of k(z1,22)¢ over k. Define S to
be the scalar subgroup of the G-action on k(x1,x2),

ie.,
x T
T (1> = 1} qG.
T2 T2

Lemma 1. We have S = (a?) and §S = 2".
Proof. From G = {a?,a%* a?13 o213 |
0 < j < 2™—1}, the assertion is checked immediately.
L]
The quotient group G/S is isomorphic to
Vy = (Z/2Z)%?, hence k(z1/x2)/k(z1/12)% is a V-
extension. By Liiroth’s theorem, k(z1/z2)¢ is purely
transcendental over k.

(3) SZZ{TEG

Proposition 2. The invariant field k(z1/z2)¢

is generated over k by

T ¢
(z122)?

(4)

Proof. Obviously we have n € k(x1/x2)¢ and
[k(x1/22) : k(n)] > §V4 = 4. On the other hand,
r1/79 is a root of a biquadratic equation X?* —
¢(7'nX? 4+ (72 = 0. Hence we obtain [k(z1/x3) :
k(n)] < 4. It follows that k(zy/x2)% = k(n). L]

From [3, §1.1], every homogeneous rational
function®) in k(z1,22) of degree #S = 2" generates
the invariant field k(zy, 22)% over k(z1/22)¢ = k(n).
Here, we choose as such function

on
®) 0= )
Ty + x5
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so that k(z1,22)% = k(n, ).

Since G is irreducible over k by regarding the
inclusion G <— Auty k(z1,22) as a linear repre-
sentation, we obtain k(xy,z2) = k(z1,72)%(R) =
k(z1,72)%(x1), where

(6) R:=Orbg(x1) = {¢Uo1, Pz |0 <5< 2" — 1}

Hence the minimal polynomial of z; over k(xy,z2)¢
is (X) := [[,er(X — ) (cf. [6, Chap. 3]), and we
have

(7) (X)) = X" = (2% +28")X¥ + (2120)"

We next give the expression of ¢(X) as a polynomial
over k(n,0).

Lemma 3. Define a sequance {E;}32, by
Ey:=nand Ej4, = E]2 — 2. Then we have

(8) g e
J (.7;11}2)2'7

Proof. This follows by mathematical induc-
tion. L]

Proposition 4. The coefficients of o(X) have
the following expressions:

9) i’ +a3 = (2 Ey)b,
(10) (z122)%" = (2 — Epn)62.
Proof. From (%"~ = —1, we have
gnt1 gnt1
7 + Ty
11 E, =—
() " (z122)%"

Hence we obtain
(a1 +a3")”
($1$2)2n
One can derive (9) and (10) from this. L]
From Lemma 3, we obtain
Ba= (o (=22 2P 2P -2,

square arises n—1 times

(12) 2-E, =

(13)

Hence we have

(14) E, = q)QJrnH (),

where @;"H (X) is the minimal polynomial of
2 cos(27 /2" 1) over Q.
By regarding n and 6 as new variables t; and to
in ¢(X), we see that
n+1 n
(15)  F(ti,t;X) = X>" +(]...(t1) — 2)t2 X
- (@;wl(tl) - 2)753

gives a Modgn+2-extension over k(tq,ta).

[Vol. 78(A),

Remark. For any integer m > 1, we know the
following identity in Z[X,Y]:

(16) X" 4y™
[m /2

]
= > B(m,j)(-XY) (X +Y)" %,
j=0

where B(m,j) = (m;jfl) + (m;j) and [-] is the
Gaufl symbol. By using this, we have an explicit

expression of (I);rn+1 (t1) for n > 2;

2n72

(7) () = 3 (1P BEL .
§=0

By the following theorem, this polynomial is
generic over k:

Theorem (Kemper and Mattig cf. [4, The-
orem 7]). Let k(zy,...,2m) be a rational func-
tion field over an arbitrary field k and G be a fi-
nite linear subgroup of Autyk(z1,...,2m). And let

M C k(x1,...,2m) be a finite G-stable subset with
k(21,.+,Tm) = k(z1,...,2,)¢(M). Suppose that
the invariant field k(z1, ..., )¢ is purely transcen-

dental over k and isomorphic to k(t1,...,tm). By
regarding [[,em(X —y) € k(21,..,2m)¢[X] as a
polynomial over k(t1,...,tm), this polynomial is k-
generic for G.

We thus have the following

Theorem 5. The polynomial F(t1,t2;X) is
k-generic for Modgn+2.

Remark. For an even integer N, we define
“modular type” finite group Modyy of order 4N by

Modyy := {(a,b | a®* =b? = 1,ab = ba' ),

it N =2"2m —1) (m > 1). This generalizes the
definition of Modyn+2, and we have

Modyn = Modgn+2 @Z/(2m - 1)Z.

In addition to the assumption for k, suppose that
the characteristic of k is prime to 2m — 1 and that k
contains p+ p =1, where y is a primitive (2m — 1)-th
root of unity. Then there exists a k-generic poly-
nomial for Z/(2m — 1)Z with one parameter asising
from a linear Noether extension (cf. [1, 5]). Hence
we can construct a k-generic polynomial for Mody
with three parameters.

cyclic polynomial. Let
Cyns1 be the cyclic group of order 27*1. A
Q(cos(2m /2" 1))-generic Cyn+1-polynomial is given
explicitly by [2, Theorem 1]. This result corresponds

3. Generic
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to a “degree-two descended” Kummer theory whose
base field is descended to the maximal real subfield of
the cyclotomic field. In the previous section, we have
constructed a Q(exp(2my/—1/2"))-generic Modgn+2-
polynomial. Since Modyn+2 has a cyclic subgroup of
order 2" ™! we can construct a Q(exp(2my/—1/2"))-
generic Cyn+1-polynomial. This gives a new “degree-
two descended” Kummer theory.

Theorem 6. The polynomial F((t? —2,t; X)
is k-generic for Cont1.

Proof. A subgroup H := (a) of G is cyclic
of order 2"T1. From Lemma 1, there exists A €
k(z1/w2)H such that k(zy,z2)7 = k() 60) and we
can choose

(18) e W

Then we have

(19) n=C\ -2

This completes the proof. L]
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