On generic polynomials for the modular 2-groups

By Yūichi RIKUNA

Department of Mathematical Sciences, Waseda University, 3-4-1, Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Communicated by Heisuke HIRONAKA, M. J. A., March 12, 2002)

Abstract: We construct a generic polynomial for $\operatorname{Mod}_{2^{n+2}}$, the modular 2-group of order 2^{n+2} , with two parameters over the 2^n -th cyclotomic field k. Our construction is based on an explicit answer for linear Noether's problem. This polynomial, which has a remarkably simple expression, gives every $\operatorname{Mod}_{2^{n+2}}$ -extension L/K with $K \supset k$, $\sharp K = \infty$ by specialization of the parameters. Moreover, we derive a new generic polynomial for the cyclic group of order 2^{n+1} from our construction.

Key words: Inverse Galois problem; Noether's problem; generic polynomials; modular 2-groups.

1. Introduction. Let n be a positive integer and k be a field whose characteristic is not two. We assume that the field k contains ζ , a primitive 2^n -th root of unity. Define α and β to be two k-automorphisms of $k(x_1, x_2)$, a rational function field over k with two variables x_1 and x_2 , by the following

(1)
$$\begin{cases} \alpha(x_1) = x_2, \\ \alpha(x_2) = \zeta x_1, \end{cases} \text{ and } \begin{cases} \beta(x_1) = x_1, \\ \beta(x_2) = -x_2. \end{cases}$$

Let G be a subgroup of $\operatorname{Aut}_k k(x_1, x_2)$ generated by α and β . This group is isomorphic to

(2)
$$\operatorname{Mod}_{2^{n+2}} := \langle a, b \mid a^{2^{n+1}} = b^2 = 1, ab = ba^{1+2^n} \rangle$$
, the modular 2-group of order 2^{n+2} .

In this paper, we construct a polynomial $F_n(t_1, t_2; X) \in k(t_1, t_2)[X]$ where t_1, t_2 are independent parameters, which has the following properties:

- 1. $F_n(t_1, t_2; X)$ is monic and has the Galois group $\operatorname{Mod}_{2^{n+2}}$ over $k(t_1, t_2)$,
- 2. for every $\operatorname{Mod}_{2^{n+2}}$ -extension L/K with $K \supset k$ and $\sharp K = \infty$, there exist $a_1, a_2 \in K$ such that L is the splitting field of $F_n(a_1, a_2; X) \in K[X]$ over K.

The polynomial satisfying these properties is called k-generic for $\text{Mod}_{2^{n+2}}$. It is an important problem for inverse Galois theory to construct explicit expressions for generic polynomials.

2. Generic $\operatorname{Mod}_{2^{n+2}}$ -polynomial. We first consider the G-extension $k(x_1, x_2)/k(x_1, x_2)^G$ and find a generating set of $k(x_1, x_2)^G$ over k. Define S to be the scalar subgroup of the G-action on $k(x_1, x_2)$, i.e.,

(3)
$$S := \left\{ \tau \in G \mid \tau \left(\frac{x_1}{x_2} \right) = \frac{x_1}{x_2} \right\} \triangleleft G.$$

Lemma 1. We have $S = \langle \alpha^2 \rangle$ and $\sharp S = 2^n$.

Proof. From $G=\{\alpha^{2j},\alpha^{2j+1},\alpha^{2j}\beta,\alpha^{2j+1}\beta\mid 0\leq j\leq 2^n-1\}$, the assertion is checked immediately.

The quotient group G/S is isomorphic to $V_4 := (\mathbf{Z}/2\mathbf{Z})^{\oplus 2}$, hence $k(x_1/x_2)/k(x_1/x_2)^G$ is a V_4 -extension. By Lüroth's theorem, $k(x_1/x_2)^G$ is purely transcendental over k.

Proposition 2. The invariant field $k(x_1/x_2)^G$ is generated over k by

(4)
$$\eta := \frac{\zeta x_1^4 + \zeta^{-1} x_2^4}{(x_1 x_2)^2}.$$

Proof. Obviously we have $\eta \in k(x_1/x_2)^G$ and $[k(x_1/x_2) : k(\eta)] \ge \sharp V_4 = 4$. On the other hand, x_1/x_2 is a root of a biquadratic equation $X^4 - \zeta^{-1}\eta X^2 + \zeta^{-2} = 0$. Hence we obtain $[k(x_1/x_2) : k(\eta)] \le 4$. It follows that $k(x_1/x_2)^G = k(\eta)$.

From [3, §1.1], every homogeneous rational function*) in $k(x_1, x_2)^G$ of degree $\sharp S = 2^n$ generates the invariant field $k(x_1, x_2)^G$ over $k(x_1/x_2)^G = k(\eta)$. Here, we choose as such function

(5)
$$\theta := \frac{(x_1 x_2)^{2^n}}{x_1^{2^n} + x_2^{2^n}}$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 12F12; Secondary 13A50.

^{*)} We call an element $f \in k(x_1, x_2)$ homogeneous of degree d if it can be written as f = g/h with $g, h \in k[x_1, x_2]$ homogeneous and $\deg g - \deg h = d$.

so that $k(x_1, x_2)^G = k(\eta, \theta)$.

Since G is irreducible over k by regarding the inclusion $G \hookrightarrow \operatorname{Aut}_k k(x_1, x_2)$ as a linear representation, we obtain $k(x_1, x_2) = k(x_1, x_2)^G(R) = k(x_1, x_2)^G(x_1)$, where

(6)
$$R := \operatorname{Orb}_G(x_1) = \{ \zeta^j x_1, \zeta^j x_2 \mid 0 \le j \le 2^n - 1 \}.$$

Hence the minimal polynomial of x_1 over $k(x_1, x_2)^G$ is $\varphi(X) := \prod_{x \in R} (X - x)$ (cf. [6, Chap. 3]), and we have

(7)
$$\varphi(X) = X^{2^{n+1}} - (x_1^{2^n} + x_2^{2^n})X^{2^n} + (x_1x_2)^{2^n}.$$

We next give the expression of $\varphi(X)$ as a polynomial over $k(\eta, \theta)$.

Lemma 3. Define a sequence $\{E_j\}_{j=1}^{\infty}$ by $E_1 := \eta$ and $E_{j+1} := E_j^2 - 2$. Then we have

(8)
$$E_j = \frac{\zeta^{2^{j-1}} x_1^{2^{j+1}} + \zeta^{-2^{j-1}} x_2^{2^{j+1}}}{(x_1 x_2)^{2^j}}.$$

Proof. This follows by mathematical induction. $\hfill\Box$

Proposition 4. The coefficients of $\varphi(X)$ have the following expressions:

(9)
$$x_1^{2^n} + x_2^{2^n} = (2 - E_n)\theta,$$

(10)
$$(x_1 x_2)^{2^n} = (2 - E_n)\theta^2.$$

Proof. From $\zeta^{2^{n-1}} = -1$, we have

(11)
$$E_n = -\frac{x_1^{2^{n+1}} + x_2^{2^{n+1}}}{(x_1 x_2)^{2^n}}.$$

Hence we obtain

(12)
$$2 - E_n = \frac{(x_1^{2^n} + x_2^{2^n})^2}{(x_1 x_2)^{2^n}}.$$

One can derive (9) and (10) from this. From Lemma 3, we obtain

(13)
$$E_n = (\cdots ((\eta \frac{2}{2} - 2)^2 - 2)^2 \cdots - 2)^2 - 2$$
.

Hence we have

(14)
$$E_n = \Phi_{2^{n+1}}^+(\eta),$$

where $\Phi_{2^{n+1}}^+(X)$ is the minimal polynomial of $2\cos(2\pi/2^{n+1})$ over \mathbf{Q} .

By regarding η and θ as new variables t_1 and t_2 in $\varphi(X)$, we see that

(15)
$$F(t_1, t_2; X) := X^{2^{n+1}} + (\Phi_{2^{n+1}}^+(t_1) - 2)t_2 X^{2^n} - (\Phi_{2^{n+1}}^+(t_1) - 2)t_2^2$$

gives a $Mod_{2^{n+2}}$ -extension over $k(t_1, t_2)$.

Remark. For any integer $m \ge 1$, we know the following identity in $\mathbf{Z}[X,Y]$:

(16)
$$X^{m} + Y^{m}$$

$$= \sum_{j=0}^{\lfloor m/2 \rfloor} B(m,j) (-XY)^{j} (X+Y)^{m-2j},$$

where $B(m,j) := \binom{m-j-1}{j-1} + \binom{m-j}{j}$ and $[\cdot]$ is the Gauß symbol. By using this, we have an explicit expression of $\Phi^+_{2n+1}(t_1)$ for $n \geq 2$;

(17)
$$\Phi_{2^{n+1}}^+(t_1) = \sum_{j=0}^{2^{n-2}} (-1)^j B(2^{n-1}, j) t_1^{2^{n-1}-2j}.$$

By the following theorem, this polynomial is generic over k:

Theorem (Kemper and Mattig cf. [4, Theorem 7]). Let $k(x_1, \ldots, x_m)$ be a rational function field over an arbitrary field k and G be a finite linear subgroup of $\operatorname{Aut}_k k(x_1, \ldots, x_m)$. And let $M \subset k(x_1, \ldots, x_m)$ be a finite G-stable subset with $k(x_1, \ldots, x_m) = k(x_1, \ldots, x_m)^G(M)$. Suppose that the invariant field $k(x_1, \ldots, x_m)^G$ is purely transcendental over k and isomorphic to $k(t_1, \ldots, t_m)$. By regarding $\prod_{y \in M} (X - y) \in k(x_1, \ldots, x_m)^G[X]$ as a polynomial over $k(t_1, \ldots, t_m)$, this polynomial is k-generic for G.

We thus have the following

Theorem 5. The polynomial $F(t_1, t_2; X)$ is k-generic for $\text{Mod}_{2^{n+2}}$.

Remark. For an even integer N, we define "modular type" finite group Mod_{4N} of order 4N by

$$Mod_{4N} := \langle a, b \mid a^{2N} = b^2 = 1, ab = ba^{1+N} \rangle,$$

if $N = 2^n(2m-1)$ $(m \ge 1)$. This generalizes the definition of $\text{Mod}_{2^{n+2}}$, and we have

$$\operatorname{Mod}_{4N} \cong \operatorname{Mod}_{2^{n+2}} \oplus \mathbf{Z}/(2m-1)\mathbf{Z}.$$

In addition to the assumption for k, suppose that the characteristic of k is prime to 2m-1 and that k contains $\mu + \mu^{-1}$, where μ is a primitive (2m-1)-th root of unity. Then there exists a k-generic polynomial for $\mathbf{Z}/(2m-1)\mathbf{Z}$ with one parameter asising from a linear Noether extension (cf. [1, 5]). Hence we can construct a k-generic polynomial for Mod_{4N} with three parameters.

3. Generic cyclic polynomial. Let $C_{2^{n+1}}$ be the cyclic group of order 2^{n+1} . A $\mathbf{Q}(\cos(2\pi/2^{n+1}))$ -generic $C_{2^{n+1}}$ -polynomial is given explicitly by [2, Theorem 1]. This result corresponds

to a "degree-two descended" Kummer theory whose base field is descended to the maximal real subfield of the cyclotomic field. In the previous section, we have constructed a $\mathbf{Q}(\exp(2\pi\sqrt{-1}/2^n))$ -generic $\mathrm{Mod}_{2^{n+2}}$ -polynomial. Since $\mathrm{Mod}_{2^{n+2}}$ has a cyclic subgroup of order 2^{n+1} , we can construct a $\mathbf{Q}(\exp(2\pi\sqrt{-1}/2^n))$ -generic $C_{2^{n+1}}$ -polynomial. This gives a new "degree-two descended" Kummer theory.

Theorem 6. The polynomial $F(\zeta t_1^2 - 2, t_2; X)$ is k-generic for $C_{2^{n+1}}$.

Proof. A subgroup $H:=\langle\alpha\rangle$ of G is cyclic of order 2^{n+1} . From Lemma 1, there exists $\lambda\in k(x_1/x_2)^H$ such that $k(x_1,x_2)^H=k(\lambda,\theta)$ and we can choose

(18)
$$\lambda := \frac{x_1^2 + \zeta^{-1} x_2^2}{x_1 x_2}.$$

Then we have

(19)
$$\eta = \zeta \lambda^2 - 2.$$

This completes the proof.

Acknowledgements. The author is a Research Fellow of the Japan Society for the Promotion

of Science and this study was supported by Grant-in-Aid for JSPS Fellows.

References

- Hashimoto, K., and Mikake, K.: Inverse Galois problem for dihedral groups. Number Theory and Its Applications (Kyoto, 1997). Dev. Math. vol. 2, Kluwer, Dordrecht, pp. 165–181 (1999).
- [2] Hashimoto, K., and Rikuna, Y.: On generic families of cyclic polynomials with even degree.

 Manuscripta Math. (To appear).
- [3] Kemper, G.: A constructive approach to Noether's problem. Manuscripta Math., **90**, 343–363 (1996).
- [4] Kemper, G., and Mattig, E.: Generic polynomials with few parameters. J. Symbolic Computation, **30**, 843–857 (2000).
- [5] Rikuna, Y.: On simple families of cyclic polynomials. Proc. Amer. Math. Soc. (To appear).
- [6] Smith, L.: Polynomial Invariants of Finite Groups. Res. Notes Math. vol. 6, A. K. Peters, Wellesley, MA (1995).