On generic polynomials for the modular 2-groups

By Yūichi Rikuna
Department of Mathematical Sciences, Waseda University, 3-4-1, Ohkubo, Shinjuku-ku, Tokyo 169-8555
(Communicated by Heisuke Hironaka, m. J. a., March 12, 2002)

Abstract

We construct a generic polynomial for $\operatorname{Mod}_{2^{n+2}}$, the modular 2-group of order 2^{n+2}, with two parameters over the 2^{n}-th cyclotomic field k. Our construction is based on an explicit answer for linear Noether's problem. This polynomial, which has a remarkably simple expression, gives every $\operatorname{Mod}_{2^{n+2}}$-extension L / K with $K \supset k, \sharp K=\infty$ by specialization of the parameters. Moreover, we derive a new generic polynomial for the cyclic group of order 2^{n+1} from our construction.

Key words: Inverse Galois problem; Noether's problem; generic polynomials; modular 2-groups.

1. Introduction. Let n be a positive integer and k be a field whose characteristic is not two. We assume that the field k contains ζ, a primitive 2^{n}-th root of unity. Define α and β to be two k automorphisms of $k\left(x_{1}, x_{2}\right)$, a rational function field over k with two variables x_{1} and x_{2}, by the following

$$
\left\{\begin{array} { l }
{ \alpha (x _ { 1 }) = x _ { 2 } , } \tag{1}\\
{ \alpha (x _ { 2 }) = \zeta x _ { 1 } , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
\beta\left(x_{1}\right)=x_{1} \\
\beta\left(x_{2}\right)=-x_{2}
\end{array}\right.\right.
$$

Let G be a subgroup of $\operatorname{Aut}_{k} k\left(x_{1}, x_{2}\right)$ generated by α and β. This group is isomorphic to
(2) $\operatorname{Mod}_{2^{n+2}}:=\left\langle a, b \mid a^{2^{n+1}}=b^{2}=1, a b=b a^{1+2^{n}}\right\rangle$,
the modular 2 -group of order 2^{n+2}.
In this paper, we construct a polynomial $F_{n}\left(t_{1}, t_{2} ; X\right) \in k\left(t_{1}, t_{2}\right)[X]$ where t_{1}, t_{2} are independent parameters, which has the following properties:

1. $F_{n}\left(t_{1}, t_{2} ; X\right)$ is monic and has the Galois group $\operatorname{Mod}_{2^{n+2}}$ over $k\left(t_{1}, t_{2}\right)$,
2. for every $\operatorname{Mod}_{2^{n+2}}$-extension L / K with $K \supset k$ and $\sharp K=\infty$, there exist $a_{1}, a_{2} \in K$ such that L is the splitting field of $F_{n}\left(a_{1}, a_{2} ; X\right) \in K[X]$ over K.
The polynomial satisfying these properties is called k-generic for $\operatorname{Mod}_{2^{n+2}}$. It is an important problem for inverse Galois theory to construct explicit expressions for generic polynomials.

2000 Mathematics Subject Classification. Primary 12F12; Secondary 13A50.
*) We call an element $f \in k\left(x_{1}, x_{2}\right)$ homogeneous of degree d if it can be written as $f=g / h$ with $g, h \in k\left[x_{1}, x_{2}\right]$ homogeneous and $\operatorname{deg} g-\operatorname{deg} h=d$.
2. Generic $\operatorname{Mod}_{2^{n+2}}$-polynomial. We first consider the G-extension $k\left(x_{1}, x_{2}\right) / k\left(x_{1}, x_{2}\right)^{G}$ and find a generating set of $k\left(x_{1}, x_{2}\right)^{G}$ over k. Define S to be the scalar subgroup of the G-action on $k\left(x_{1}, x_{2}\right)$, i.e.,

$$
S:=\left\{\begin{array}{l|l}
\tau \in G & \left.\tau\left(\frac{x_{1}}{x_{2}}\right)=\frac{x_{1}}{x_{2}}\right\} \triangleleft G . . . ~ \tag{3}
\end{array}\right\}
$$

Lemma 1. We have $S=\left\langle\alpha^{2}\right\rangle$ and $\sharp S=2^{n}$.
Proof. From $G=\left\{\alpha^{2 j}, \alpha^{2 j+1}, \alpha^{2 j} \beta, \alpha^{2 j+1} \beta \mid\right.$ $\left.0 \leq j \leq 2^{n}-1\right\}$, the assertion is checked immediately.

The quotient group G / S is isomorphic to $V_{4}:=(\mathbf{Z} / 2 \mathbf{Z})^{\oplus 2}$, hence $k\left(x_{1} / x_{2}\right) / k\left(x_{1} / x_{2}\right)^{G}$ is a $V_{4}{ }^{-}$ extension. By Lüroth's theorem, $k\left(x_{1} / x_{2}\right)^{G}$ is purely transcendental over k.

Proposition 2. The invariant field $k\left(x_{1} / x_{2}\right)^{G}$ is generated over k by

$$
\begin{equation*}
\eta:=\frac{\zeta x_{1}^{4}+\zeta^{-1} x_{2}^{4}}{\left(x_{1} x_{2}\right)^{2}} \tag{4}
\end{equation*}
$$

Proof. Obviously we have $\eta \in k\left(x_{1} / x_{2}\right)^{G}$ and $\left[k\left(x_{1} / x_{2}\right): k(\eta)\right] \geq \sharp V_{4}=4$. On the other hand, x_{1} / x_{2} is a root of a biquadratic equation $X^{4}-$ $\zeta^{-1} \eta X^{2}+\zeta^{-2}=0$. Hence we obtain $\left[k\left(x_{1} / x_{2}\right)\right.$: $k(\eta)] \leq 4$. It follows that $k\left(x_{1} / x_{2}\right)^{G}=k(\eta)$.

From [3, §1.1], every homogeneous rational function*) in $k\left(x_{1}, x_{2}\right)^{G}$ of degree $\sharp S=2^{n}$ generates the invariant field $k\left(x_{1}, x_{2}\right)^{G}$ over $k\left(x_{1} / x_{2}\right)^{G}=k(\eta)$. Here, we choose as such function

$$
\begin{equation*}
\theta:=\frac{\left(x_{1} x_{2}\right)^{2^{n}}}{x_{1}^{2^{n}}+x_{2}^{2^{n}}} \tag{5}
\end{equation*}
$$

so that $k\left(x_{1}, x_{2}\right)^{G}=k(\eta, \theta)$.
Since G is irreducible over k by regarding the inclusion $G \hookrightarrow$ Aut $_{k} k\left(x_{1}, x_{2}\right)$ as a linear representation, we obtain $k\left(x_{1}, x_{2}\right)=k\left(x_{1}, x_{2}\right)^{G}(R)=$ $k\left(x_{1}, x_{2}\right)^{G}\left(x_{1}\right)$, where
(6) $R:=\operatorname{Orb}_{G}\left(x_{1}\right)=\left\{\zeta^{j} x_{1}, \zeta^{j} x_{2} \mid 0 \leq j \leq 2^{n}-1\right\}$.

Hence the minimal polynomial of x_{1} over $k\left(x_{1}, x_{2}\right)^{G}$ is $\varphi(X):=\prod_{x \in R}(X-x)$ (cf. [6, Chap. 3]), and we have
(7) $\varphi(X)=X^{2^{n+1}}-\left(x_{1}^{2^{n}}+x_{2}^{2^{n}}\right) X^{2^{n}}+\left(x_{1} x_{2}\right)^{2^{n}}$.

We next give the expression of $\varphi(X)$ as a polynomial over $k(\eta, \theta)$.

Lemma 3. Define a sequance $\left\{E_{j}\right\}_{j=1}^{\infty}$ by $E_{1}:=\eta$ and $E_{j+1}:=E_{j}^{2}-2$. Then we have

$$
\begin{equation*}
E_{j}=\frac{\zeta^{2^{j-1}} x_{1}^{2^{j+1}}+\zeta^{-2^{j-1}} x_{2}^{2^{j+1}}}{\left(x_{1} x_{2}\right)^{2 j}} \tag{8}
\end{equation*}
$$

Proof. This follows by mathematical induction.

Proposition 4. The coefficients of $\varphi(X)$ have the following expressions:

$$
\begin{align*}
x_{1}^{2^{n}}+x_{2}^{2^{n}} & =\left(2-E_{n}\right) \theta, \tag{9}\\
\left(x_{1} x_{2}\right)^{2^{n}} & =\left(2-E_{n}\right) \theta^{2} .
\end{align*}
$$

Proof. From $\zeta^{2^{n-1}}=-1$, we have

$$
\begin{equation*}
E_{n}=-\frac{x_{1}^{2^{n+1}}+x_{2}^{2^{n+1}}}{\left(x_{1} x_{2}\right)^{2^{n}}} \tag{11}
\end{equation*}
$$

Hence we obtain

$$
\begin{equation*}
2-E_{n}=\frac{\left(x_{1}^{2^{n}}+x_{2}^{2^{n}}\right)^{2}}{\left(x_{1} x_{2}\right)^{2^{n}}} \tag{12}
\end{equation*}
$$

One can derive (9) and (10) from this.
From Lemma 3, we obtain

$$
\begin{equation*}
E_{n}=\left(\cdots \left(\left(\eta^{\left.\left.\left.\eta^{2}-2\right)^{2}-2\right)^{2} \cdots-2\right)^{2}-2} .\right.\right.\right. \tag{13}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
E_{n}=\Phi_{2^{n+1}}^{+}(\eta) \tag{14}
\end{equation*}
$$

where $\Phi_{2^{n+1}}^{+}(X)$ is the minimal polynomial of $2 \cos \left(2 \pi / 2^{n+1}\right)$ over \mathbf{Q}.

By regarding η and θ as new variables t_{1} and t_{2} in $\varphi(X)$, we see that

$$
\begin{align*}
F\left(t_{1}, t_{2} ; X\right):= & X^{2^{n+1}}+\left(\Phi_{2^{n+1}}^{+}\left(t_{1}\right)-2\right) t_{2} X^{2^{n}} \tag{15}\\
& -\left(\Phi_{2^{n+1}}^{+}\left(t_{1}\right)-2\right) t_{2}^{2}
\end{align*}
$$

gives a $\operatorname{Mod}_{2^{n+2}}$-extension over $k\left(t_{1}, t_{2}\right)$.

Remark. For any integer $m \geq 1$, we know the following identity in $\mathbf{Z}[X, Y]$:

$$
\begin{align*}
& X^{m}+Y^{m} \tag{16}\\
= & \sum_{j=0}^{[m / 2]} B(m, j)(-X Y)^{j}(X+Y)^{m-2 j}
\end{align*}
$$

where $B(m, j):=\binom{m-j-1}{j-1}+\binom{m-j}{j}$ and $[\cdot]$ is the Gauß symbol. By using this, we have an explicit expression of $\Phi_{2^{n+1}}^{+}\left(t_{1}\right)$ for $n \geq 2$;

$$
\begin{equation*}
\Phi_{2^{n+1}}^{+}\left(t_{1}\right)=\sum_{j=0}^{2^{n-2}}(-1)^{j} B\left(2^{n-1}, j\right) t_{1}^{2^{n-1}-2 j} \tag{17}
\end{equation*}
$$

By the following theorem, this polynomial is generic over k :

Theorem (Kemper and Mattig cf. [4, Theorem 7]). Let $\mathrm{k}\left(x_{1}, \ldots, x_{m}\right)$ be a rational function field over an arbitrary field k and G be a finite linear subgroup of $\operatorname{Aut}_{\mathrm{k}} \mathrm{k}\left(x_{1}, \ldots, x_{m}\right)$. And let $\mathrm{M} \subset \mathrm{k}\left(x_{1}, \ldots, x_{m}\right)$ be a finite G -stable subset with $\mathrm{k}\left(x_{1}, \ldots, x_{m}\right)=\mathrm{k}\left(x_{1}, \ldots, x_{m}\right)^{\mathrm{G}}(\mathrm{M})$. Suppose that the invariant field $\mathrm{k}\left(x_{1}, \ldots, x_{m}\right)^{\mathrm{G}}$ is purely transcendental over k and isomorphic to $\mathrm{k}\left(t_{1}, \ldots, t_{m}\right)$. By regarding $\prod_{y \in \mathrm{M}}(X-y) \in \mathrm{k}\left(x_{1}, \ldots, x_{m}\right)^{\mathrm{G}}[X]$ as a polynomial over $\mathrm{k}\left(t_{1}, \ldots, t_{m}\right)$, this polynomial is k generic for G .

We thus have the following
Theorem 5. The polynomial $F\left(t_{1}, t_{2} ; X\right)$ is k-generic for $\operatorname{Mod}_{2^{n+2}}$.

Remark. For an even integer N, we define "modular type" finite group $\operatorname{Mod}_{4 N}$ of order $4 N$ by

$$
\operatorname{Mod}_{4 N}:=\left\langle a, b \mid a^{2 N}=b^{2}=1, a b=b a^{1+N}\right\rangle
$$

if $N=2^{n}(2 m-1)(m \geq 1)$. This generalizes the definition of $\operatorname{Mod}_{2^{n+2}}$, and we have

$$
\operatorname{Mod}_{4 N} \cong \operatorname{Mod}_{2^{n+2}} \oplus \mathbf{Z} /(2 m-1) \mathbf{Z}
$$

In addition to the assumption for k, suppose that the characteristic of k is prime to $2 m-1$ and that k contains $\mu+\mu^{-1}$, where μ is a primitive $(2 m-1)$-th root of unity. Then there exists a k-generic polynomial for $\mathbf{Z} /(2 m-1) \mathbf{Z}$ with one parameter asising from a linear Noether extension (cf. [1, 5]). Hence we can construct a k-generic polynomial for $\operatorname{Mod}_{4 N}$ with three parameters.
3. Generic cyclic polynomial. Let $C_{2^{n+1}}$ be the cyclic group of order 2^{n+1}. A $\mathbf{Q}\left(\cos \left(2 \pi / 2^{n+1}\right)\right)$-generic $C_{2^{n+1}}$-polynomial is given explicitly by [2, Theorem 1]. This result corresponds
to a "degree-two descended" Kummer theory whose base field is descended to the maximal real subfield of the cyclotomic field. In the previous section, we have constructed a $\mathbf{Q}\left(\exp \left(2 \pi \sqrt{-1} / 2^{n}\right)\right)$-generic $\operatorname{Mod}_{2^{n+2}}$ polynomial. Since $\operatorname{Mod}_{2^{n+2}}$ has a cyclic subgroup of order 2^{n+1}, we can construct a $\mathbf{Q}\left(\exp \left(2 \pi \sqrt{-1} / 2^{n}\right)\right)$ generic $C_{2^{n+1}}$-polynomial. This gives a new "degreetwo descended" Kummer theory.

Theorem 6. The polynomial $F\left(\zeta t_{1}^{2}-2, t_{2} ; X\right)$ is k-generic for $C_{2^{n+1}}$.

Proof. A subgroup $H:=\langle\alpha\rangle$ of G is cyclic of order 2^{n+1}. From Lemma 1, there exists $\lambda \in$ $k\left(x_{1} / x_{2}\right)^{H}$ such that $k\left(x_{1}, x_{2}\right)^{H}=k(\lambda, \theta)$ and we can choose

$$
\begin{equation*}
\lambda:=\frac{x_{1}^{2}+\zeta^{-1} x_{2}^{2}}{x_{1} x_{2}} \tag{18}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\eta=\zeta \lambda^{2}-2 \tag{19}
\end{equation*}
$$

This completes the proof.
Acknowledgements. The author is a Research Fellow of the Japan Society for the Promotion
of Science and this study was supported by Grant-in-Aid for JSPS Fellows.

References

[1] Hashimoto, K., and Mikake, K.: Inverse Galois problem for dihedral groups. Number Theory and Its Applications (Kyoto, 1997). Dev. Math. vol. 2, Kluwer, Dordrecht, pp. 165-181 (1999).
[2] Hashimoto, K., and Rikuna, Y.: On generic families of cyclic polynomials with even degree. Manuscripta Math. (To appear).
[3] Kemper, G.: A constructive approach to Noether's problem. Manuscripta Math., 90, 343-363 (1996).
[4] Kemper, G., and Mattig, E.: Generic polynomials with few parameters. J. Symbolic Computation, 30, 843-857 (2000).
[5] Rikuna, Y.: On simple families of cyclic polynomials. Proc. Amer. Math. Soc. (To appear).
[6] Smith, L.: Polynomial Invariants of Finite Groups. Res. Notes Math. vol. 6, A. K. Peters, Wellesley, MA (1995).

