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General Hodge conjecture for abelian varieties of CM-type
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Abstract: The general Hodge conjecture for abelian varieties of CM-type is shown to be
implied by the usual Hodge conjecture for those up to codimension two.
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1. Introduction. The purpose of this arti-
cle is to announce that the validity of the Hodge
conjecture in codimension two implies that of the
whole general Hodge conjecture (GHC for short) for
any abelian varieties of CM-type. The main ingre-
dient is the theory of abelian varieties associated to
hyperplane arrangements as is developed in [3]. In
particular, the notion of “N -dominatedness” intro-
duced in [3] plays an essential role for us to under-
stand what kind of exceptional Hodge cycles should
be proved to be algebraic. Our strategy for the proof
goes roughly as follows: Given a Galois CM-field K

with Gal(K/Q) ∼= G, we associate an abelian variety
AA(2n)(G;K) to a hyperplane arrangement A(2n) in
Rn. Thereafter we show an arbitrary abelian vari-
ety A of CM-type split by K can be embedded into
an appropriate self-product AA(2n)(G;K)m (Propo-
sition 6.2). Thus GHC for A is reduced to GHC
for AA(2n)(G;K)m (Lemma 2.1). Furthermore we
reduce GHC for AA(2n)(G;K)m to the usual Hodge
conjecture for AA(2n)(G;K) by translating the prop-
erties of various rational sub-Hodge structures of its
cohomology spaces into some combinatorial proper-
ties of the arrangement A(2n). Thus the fact that
AA(2n)(G;K) is 2-dominated (Theorem 7.4) implies
the aforementioned result. Details will appear else-
where.

2. General Hodge conjecture. Let X be
a smooth projective variety over C. For any rational
sub-Hodge structure W ⊂ Hk(X,Q), we define the
level l(W ) by l(W ) = max{p − q;W p,q

C �= 0}. Then
GHC for X is formulated as follows:

For any rational sub-Hodge structure W ⊂
Hk(X,Q) with l(W ) = k−2p, there exists a Zariski-
closed subset Z of codimension p on X such that
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W ⊂ ker{Hk(X,Q) → Hk(X − Z,Q)}.
The following lemma is crucial in view of Propo-

sition 6.3 below.
Lemma 2.1. Let A be an abelian variety and

B an abelian subvariety of A. Then GHC for A im-
plies that for B.

3. Varchenko and Hodge matrices. Let
A = {H1, . . . , Hk} be a hyperplane arrangement in
Rn, and let R(A) = {R1, . . . , Rm} denote the set of
regions of the complement of the union of A. For
regions S, T ∈ R(A) the number of hyperplanes in A
which separate S and T is denoted by d(S, T ). We
introduced in [3] the matrix

D = D(A) = (d(S, T ))(S,T )∈R(A)×R(A),

and called it the additive version of Varchenko matrix
(abbreviated as AV -matrix), the rows and columns
being ordered according to the given numbering of
R(A). Let V (A) =

{∑
R∈R(A) aRR; aR ∈ Q

}
be

the Q-vector space consisting of the formal Q-linear
combinations of the elements in R(A).

Proposition 3.1 (see [3, Proposition 2.1]).
For any hyperplane H ∈ A, let hH ∈ V (A) denote
the vector whose j-th entry (hH)j is defined by the
rule

(hH)j =

{
1, if H does not separate Rj and R1,
−1, otherwise.

Let Row-sp(D(A)) denote the subspace of V (A)
generated by the row vectors of D(A). Then we
have Row-sp(D(A)) = 〈hH ;H ∈ A, 1 〉Q, where
1 =

∑
R∈R(A) R ∈ V (A), and dimRow-sp(D(A)) =

�(A) + 1.
Remark. In [3, Proposition 2.1], we made an

assumption that (O): there exists a pair (R, S) ∈
R(A) × R(A) such that d(R, S) = k (= �A), for the
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validity of the proposition. After the paper was pub-
lished, however, Prof. Vojta kindly informed to the
author that this assumption holds for any hyperplane
arrangement.

Let H(A) denote the k bymmatrix consisting of
k row vectors hH1 , . . . , hHk , and let Hsp(A) denote
its row space. We callH(A) Hodge matrix associated
to the hyperplane arrangement A. It follows from
Proposition 3.1 that rankH(A) = dimHsp(A) = k.

4. Generalities on abelian varieties of
CM-type. Let K be a Galois CM-extension of Q
with Gal(K/Q) ∼= G. Let ρ ∈ G denote the complex
conjugation.

(4.A) The category of CM Q-algebras
(= products of CM-fields) split by K is anti-
equivalent to the category of finite G-sets by the
correspondences, F → HomQ-algebra(F,K) for F a
CM Q-algebra.

(4.B) A finite G-set S, plus the data of S1 ⊂ S

with S the disjoint sum of S1 and ρS1 , give an abelian
variety A of CM type (up to isogeny), on which the
CM-algebra F corresponding to S acts by endomor-
phisms: the rational lattice is F ∼= HomG(S,K) and
A is CS1/{a lattice in F }.

Remark. For any set X and integer n ≥ 1,
we denote the disjoint union of n copies of X by
X(n). We identifyX(n) with X×[1, n], where [1, n] =
{1, 2, . . . , n}, and denote by p the natural projection
X(n) = X×[1, n] → X. In this notation, if an abelian
variety A corresponds to S1 ⊂ S as in (4.B), then the
self-product An, n ≥ 1, corresponds to the disjoint
union (S1)(n) ⊂ S(n) endowed with natural G-set
structure.

The Hodge ring (= the ring of Hodge cycles) of
A is described as follows (see [2, 3] for detail):

(4.C) The first cohomology group H1(A,C)
can be identified with CS , and S1 defines a one-
parameter subgroup T of Gl(CS). The Hodge group
Hg(A) is given by T and its conjugates. As a con-
sequence, the complexification of the Hodge ring (⊂
ΛCS) admits as basis the set of basis vectors of ΛCS

corresponding to subsets P of S with the property
that �(P ∩ S1g) = (�P )/2 for any g ∈ G.

An abelian varietyA of CM-type is said to beN -
dominated if the following condition holds: for every
n ≥ 1 the Hodge ring H(An)C of An is spanned by
the Hodge classes [P ], P ⊂ S(n) with �(P ) ≤ 2N .
Furthermore A is said to be h-degenerate if for every
n ≥ 1 the Hodge ring H(An)C of An is spanned by
the Hodge classes [P ], P ⊂ S(n) with d(P )s ≤ h, s ∈

S, where d(P )s = �(p−1(s) ∩ P ).
In view of the following proposition, this notion

plays an important role when we try to prove the
Hodge conjecture.

Proposition 4.1. Let A be an abelian variety
of CM-type. Suppose that A is h-degenerate and the
Hodge conjecture holds for any Ak, k ≤ h. Then it
holds for all self-products An, n ≥ 1.

5. Abelian varieties associated to CM-
arrangements. A hyperplane arrangement A in
Rn is said to be central when any hyperplane of A
contains the origin of Rn. Let K be a Galois CM-
field with Gal(K/Q) = G.

Definition 5.1. A central hyperplane ar-
rangement A in Rn is said to be a CM-arrangement
with respect to the pair (G,K), if there exists an
embedding i : G → GLn(R) such that i(G) acts
transitively on A and i(ρ) is the multiplication by
−1.

Given a CM-arrangement A, and for any hyper-
plane H ∈ A, let H>0 denote the connected com-
ponent of Rn − H which contains the region R1,
and H<0 the other component. Let H+ = {R ∈
R(A); R ⊂ H>0}, H− = {R ∈ R(A); R ⊂ H<0}
(= H+ρ). In (4.B), we take the set R(A) as G-set
S, and the subset H+

1 ⊂ R(A) as S1 ⊂ S, and de-
note by AA(G;K) the abelian variety corresponding
to the pair (S, S1) = (R(A), H+

1 ). Then the fact
that G acts transitively on A implies the following
proposition, which is rather unexpected.

Proposition 5.2. The structure of the Hodge
ring of AA(G;K) as well as AA(G;K)n, n ≥ 1, de-
pends only on A, and not on the pair (G,K).

A hyperplane arrangement A(2n) in Rn, called
the hyperplane arrangement of (2, . . . , 2)-type, is
defined by A(2n) = {H1, . . . , Hn}, where Hi =
{(x1, . . . , xN) ∈ Rn; xi = 0}, 1 ≤ i ≤ n. Each
region of A(2n) is specified by the sign of the coor-
dinates: R(A(2n)) = {R(ε1, . . . , εn); εi ∈ {±1}, 1 ≤
i ≤ n}, where R(ε1, . . . , εn) = {(x1, . . . , xn) ∈ Rn;
sgn(xi) = εi, 1 ≤ i ≤ n}. In particular, we have
�(R(A(2n))) = 2n.

6. Abelian varieties of CM-type and the
hyperplane arrangement of (2, . . . , 2)-type.
Let K be a Galois CM-field of degree 2n and let
G = Gal(K/Q). It follows from [1] that there is an
injective homomorphism Φ : G → {±1}wrSn. For
later use we recall briefly the construction of Φ. Let
ρ ∈ G denote the complex conjugation, and let S1 =
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{g1, . . . , gn} ⊂ G be a CM-type of K so that G =
{g1, . . . , gn, g1ρ, . . . , gnρ}. We assume that g1 is the
identity of G. We define a map Σ : G → {±1}n by
the rule

Σ(g) = (ε1, . . . , εn) ∈ {±1}n,(6.1)

where εi =

{
1, if g ∈ S1g

−1
i ,

−1, if g /∈ S1g
−1
i ,

for 1 ≤ i ≤ n. Hence for any g ∈ G, there exists a
unique permutation σ = Π(g) ∈ Sn such that ggi =
ρµ(εi)gσ−1(i), where the map µ : {±1} → Z/2Z is the
homomorphism defined by µ(1) = 0, µ(−1) = 1.

Proposition 6.1. Notation being as above, let
Φ : G → {±1}wrSn be the map defined by Φ(g) =
(Σ(g);Π(g)) for any g ∈ G. Then we have the fol-
lowing:
(i) Φ is an injective homomorphism,
(ii) the image of Φ(G) under the natural projection

{±1}wrSn → Sn is a transitive subgroup of Sn,
(iii) if A is simple then the map Σ : G→ {±1}n is

injective.
We can consider the wreath product Gn =

{±1}wrSn naturally as a subgroup of GL(Rn) by
the rule

(x1, . . . , xn)((ε1, . . . , εn); σ)(6.2)

= (ε1xσ−1(1), . . . , εnxσ−1(n)).

Then the homomorphism Φ provides Rn with the
structure of a right G-module. Note that the set of
hyperplanes A(2n) is stable under this action of Gn
on Rn, and that, by Proposition 6.1 (ii), G acts tran-
sitively onA(2n). Hence A(2n) is a CM-arrangement
with respect to (G,K) in the sense of Section four.
By using this, we can show the following:

Proposition 6.2. Any simple abelian vari-
ety of CM-type with Galois CM-field K such that
Gal(K/Q) ∼= G is realized as a simple component
of AA(2n)(G;K).

Since every abelian variety split by K is isoge-
nous to the product of a number of simple compo-
nents of abelian varieties of type (K, S1) with suit-
able S1’s, we have the following:

Proposition 6.3. Any abelian variety split by
K is realized up to isogeny as an abelian subvariety
of a certain self-product AA(2n)(G;K)m for suitable
m ≥ 1.

7. Kernel of the Hodge matrix for
A(2n). Since the structure of the Hodge ring of
AA(2n)(G;K)m, m ≥ 1, does not depend on the pair

(G,K) by Proposition 5.2, we can take any (G,K)
for the investigation of the Hodge ring under the as-
sumption that A(2n) is a CM-arrangement with re-
spect to (G,K). Accordingly we set G = {±1}wrSn.
Note that it has a central subgroup {((ε1, . . . , εn); e);
εi ∈ {±1}, i ∈ [1, n]}, which is isomorphic to
Bn = (Z/2Z)n. Let K be a Galois CM-field with
Gal(K/Q) ∼= G such that the complex conjugation
corresponds to 1 = (1, . . . , 1) ∈ Bn. We let G act
on Rn as in (6.2). Then A(2n) is a CM-arrangement
with respect to the pair (G,K). Since the action
of Bn on the set R(A(2n)) of regions is simple and
transitive, we can identify R(A(2n)) with Bn by the
rule (ai) ∈ Bn corresponds to R((−1)a1 , . . . , (−1)an).
Hence we can identify R(A(2n)) with Bn. Under
this identification the function d(·, ·) introduced in
Section three coincides with the so-called Hamming
distance. Furthermore the Q-vector space V (A(2n))
spanned by R(A(2n)) is isomorphic as representation
space of Bn to the group algebra Q[Bn].

Definition 7.1. For any a = (ai) ∈ Bn, let
χa ∈ Hom(Bn,C∗) denote the character of Bn de-
fined by χa(σ) = (−1)

�
1≤i≤n aiσi for σ = (σi) ∈ Bn.

Let va denote the vector in V (A(2n)) (= Q[Bn]) de-
fined by va =

∑
σ∈Bn

χa(σ)σ.
The element va gives a basis element of the one-

dimensional vector space V (χa) = {v ∈ V (A(2n));
σv = χa(σ)v for any σ ∈ Bn}, which affords the
representation χa ofBn, so that we have V (A(2n)) =⊕

a∈Bn
V (χa).

Proposition 7.2. As representation spaces of
Bn, we have

Row-sp(D(A(2n))) =
⊕

1≤i≤n
V (χei )⊕ V (χ(0,...,0)),

Hsp(A(2n)) =
⊕

1≤i≤n
V (χei ).

Let ρ : Bn → Bn denote the map defined by
ρ(a) = 1.a.

Theorem 7.3. Let B0
n = {a ∈ Bn; a1 = 0}.

For any a ∈ B0
n, let da = a + ρ(a) ∈ V (A(2n)). For

any pair (i, j) with 1 ≤ i < j ≤ n, let zij = 0 +
ρ(ei) + ρ(ej) + eij ∈ V (A(2n)), where

0 = (0, . . . , 0),

eij = (0, . . . , 0,
i

1̆, 0, . . . , 0,
j

1̆, 0, . . . , 0) ∈ Bn.

Then the kernel of the Hodge matrix H(A(2n)) is
spanned by σda, with a ∈ B0

n, σ ∈ Bn, and σzij ,
with 1 ≤ i < j ≤ n, σ ∈ Bn.
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Thus by Proposition 4.9 in [3] we obtain the
following:

Theorem 7.4. When n = 1, 2, the abelian
variety AA(2n)(G;K) is 1-dominated, namely, non-
degenerate. When n ≥ 3, the abelian variety
AA(2n)(G;K) is 1-degenerate and 2-dominated.

Corollary 7.4.1. If every Hodge cycle of codi-
mension two on AA(2n)(G;K) is algebraic, then
the whole Hodge conjecture holds true for any self-
products AA(2n)(G;K)m, m ≥ 1.

Thus an argument similar to that for [3] implies
the following:

Theorem 7.5. Suppose that the Hodge cycles
of codimension two on AA(2n)(G;K) is algebraic.
Then the whole GHC holds for any self-product
AA(2n)(G;K)m.

Combining this with Proposition 6.3 and
Lemma 2.1, we obtain the following:

Theorem 7.6. Suppose that every Hodge cy-
cle of codimension two on AA(2n)(G;K) is algebraic
for any pair (G,K). Then the whole GHC holds for
any abelian variety of CM-type.
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