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Global existence of solutions to the generalized

Proudman-Johnson equation

By Xinfu Chen
∗) and Hisashi Okamoto

∗∗)

(Communicated by Heisuke Hironaka, m. j. a., Sept. 12, 2002)

Abstract: We consider the equation fxxt + ffxxx − afxfxx = νfxxxx, x ∈ (0, 1), t > 0,
where a ∈ R is a constant, with the periodic boundary condition. We show that any solution exists
globally in time if −3 ≤ a ≤ 1.
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1. Introduction. We consider the general-
ized Proudman-Johnson equation proposed by [7]. It
is an equation for f = f(x, t) and is written as

fxxt + ffxxx − afxfxx = νfxxxx,(1.1)

0 < t, x ∈ (0, 1).

Here ν > 0 is a constant called viscosity, t the time
variable, x the space, and subscripts stand for dif-
ferentiation. For the sake of simplicity we only con-
sider it with the periodic boundary condition. Also,∫ 1

0
f(x, t)dx ≡ 0 is assumed. It is possible to make

ν be unity by a suitable change of scales. But we do
not employ this and leave ν as it is.

Equation (1.1) with a = −(m − 3)/(m − 1) is
derived from the Navier-Stokes equations for incom-
pressible viscous fluid in Rm by assuming a special
similarity form on the velocity field; see [7] and the
references therein. The case of m = 2 was considered
by Proudman and Johnson [6], whence (1.1) with a =
1 is now called the Proudman-Johnson equation.

Based on their numerical experiments, Okamoto
and Zhu [7] suggested that the solution of (1.1) ex-
ists globally in time if a0 ≤ a ≤ 1 and that some
solutions may blow up in finite time if a < a0 or
1 < a. (They were actually unable to determine a0,
the lower limit of the global existence.) As for the
global existence, they could prove it mathematically
only in the case where a = 0,−2, and a = −1/(2k)
(k = 1, 2, 3, · · ·). In our previous paper [1] we proved
that the conjecture was true for a = 1. The purpose
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of the present paper is to prove the conjecture in the
case where −3 ≤ a < 1:

Theorem 1. Suppose that −3 ≤ a ≤ 1. Then
any solution exists for all t ∈ [0,∞).

This theorem is not rigorously stated in that it
does not specify the class of solutions but this will be
clear after we have explained a local-existence theo-
rem in the next section.

Remark 1.1. [7] suggested a0 ∼ −3 but Fig.
6 in [7] is misleading because it suggests a0 > −3,
though the figure shows the case of a different bound-
ary condition.

Remark 1.2. Based on the result of [7], we
believe that, if a < −3 or 1 < a, solutions with large
initial data blow up in finite time, while solutions
with small initial date exist globally in time. We
are, however, unable to prove this.

2. Proof of the Theorem. Proof is carried
out separately in the cases of −3 ≤ a < −1, −1 ≤
a < 0, and 0 < a < 1. The global existence in
the case of a = 0 is known in [7]. The global exis-
tence in this case is a consequence of the fact that
the maximum principle holds for fxx. Accordingly
‖fxx(t)‖∞ ≤ ‖fxx(0)‖∞ holds true. (Hereafter ‖ ‖p

denote the norm of Lp(0, 1) (1 ≤ p ≤ ∞) and g(·, t),
which is regarded as a function of x only and t is
regarded as a parameter, is denoted by g(t).) In the
case where a �= 0, we will derive similar but different
a priori estimates to prove the global existence.

To begin with, we remark the following local
existence theorem:

Theorem 2. Let a be any real number. For
all g ∈ L2(0, 1) satisfying

∫ 1

0 g(x)dx = 0, there exists
a T > 0 such that (1.1) has a unique solution in 0 ≤
t ≤ T satisfying the periodic boundary condition and
fx(x, 0) = g(x).
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Accordingly, the global existence holds true if
we have shown that ‖fx(t)‖2 is bounded in 0 ≤ t ≤
T for any T > 0. The proof of Theorem 2 is given
in section 3 and we are now going to derive a priori
estimates.

2.1. The case of 0 < a < 1. We differen-
tiate (1.1) to obtain

(2.1) fxxxt + ff(4) + (1− a)fxfxxx − af2
xx = νf(5).

We define Φ(u) by

Φ(u) =

{
|u|1/(1−a) (u < 0)

0 (0 ≤ u).

By (2.1), we obtain

d

dt

∫ 1

0

Φ(fxxx)dx =
∫ 1

0

Φ′(fxxx)
(
af2

xx + νf(5)
)
dx

−
∫ 1

0

Φ′(fxxx)
(
ff(4) + (1 − a)fxfxxx

)
dx.

It holds that
∫ 1

0
f2

xxΦ′(fxxx)dx ≤ 0, since Φ is a
monotone decreasing function. Further∫ 1

0

f(5)Φ′(fxxx)dx = −
∫ 1

0

(
f(4)
)2Φ′′(fxxx)dx ≤ 0,

since Φ is a convex function. Finally we have∫ 1

0

ff(4)Φ′(fxxx)dx = −
∫ 1

0

fxΦ(fxxx)dx.

Since Φ(u) = (1 − a)uΦ′(u), we obtain

d

dt

∫ 1

0

Φ(fxxx)dx ≤ 0.

This implies that∫
{fxxx<0}

|fxxx(x, t)|1/(1−a)
dx ≤ c,

where c is a constant independent of t. Hereafter
c denotes a positive constant which is independent
of t but may be different in different contexts. By
Hölder’s inequality, we obtain∫

{fxxx<0}
|fxxx(x, t)|dx ≤ c.

Since

0 =
∫ 1

0

fxxxdx

=
∫
{fxxx>0}

fxxxdx+
∫
{fxxx<0}

fxxxdx,

we conclude that

∫ 1

0

|fxxx|dx ≤ c,

whence

max
0≤x≤1

|fxx(x, t)| ≤ c.

This a priori estimate and the local existence theo-
rem guarantee the global existence.

2.2. The case of −1 ≤ a < 0. We define
Φ(u) by Φ(u) = |u|−1/a. Suppose for the moment
that −1 < a < 0 and compute

d

dt

∫ 1

0

Φ(fxx)dx = ν

∫ 1

0

Φ′(fxx)fxxxxdx

+
∫ 1

0

Φ′(fxx)(afxfxx − ffxxx)dx.

Integrating by parts, we have∫ 1

0

Φ′(fxx)ffxxxdx = −
∫ 1

0

fxΦ(fxx)dx.

Since Φ(u) = −auΦ′(u), it follows that

d

dt

∫ 1

0

Φ(fxx)dx = ν

∫ 1

0

Φ′(fxx)fxxxxdx

= −
∫ 1

0

Φ′′(fxx)f2
xxxdx ≤ 0.

(Here Φ′′ appears and we have to assume that −1 <
a.) We therefore obtain the following bound:

(2.2)
∫ 1

0

|fxx(x, t)|−1/a
dx ≤

∫ 1

0

|fxx(x, 0)|−1/a
dx.

Since the solutions depend continuously on a, this
inequality holds for a = −1, too. (2.2) implies that

max
0≤x≤1

|fx(x, t)| ≤ c,

and the global existence follows.
2.3. The case of −3 ≤ a < −1. We first

consider the case of a = −3. If we differentiate the
Burgers equation ft +ffx = νfxx twice, we then ob-
tain (1.1) with a = −3. The global existence follows
from that of the Burgers equation.

We next consider the case where −3 < a < −1.
In this case we integrate (1.1) to obtain

(2.3) fxt + ffxx − 1 + a

2
f2

x = νfxxx + γ(t),

where γ(t) depends only on t. Integrating this equa-
tion in 0 < x < 1, we see that

γ(t) = −3 + a

2

∫ 1

0

f2
xdx ≤ 0.
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Define Φ(u) by

Φ(u) =

{
0 (u ≤ 0)

u−2/(1+a) (0 < u).

We now have

d

dt

∫ 1

0

Φ(fx)dx =
∫ 1

0

Φ′(fx)
(
−ffxx +

1 + a

2
f2

x

)
dx

+
∫ 1

0

Φ′(fx)
(
νfxxx + γ(t)

)
dx.

Note that

γ(t)
∫ 1

0

Φ′(fx)dx ≤ 0

and ∫ 1

0

Φ′(fx)fxxxdx = −
∫ 1

0

Φ′′(fx)f2
xxdx ≤ 0,

since Φ is monotone increasing and convex. Further,∫ 1

0

ffxxΦ′(fx)dx = −
∫ 1

0

fxΦ(fx)dx.

Since Φ(u) = −(1 + a/2)uΦ′(u), we obtain∫ 1

0

Φ(fx(x, t))dx ≤
∫ 1

0

Φ(fx(x, 0))dx.

By the same argument in section 2.1, we obtain

(2.4)
∫ 1

0

|fx(x, t)|dx≤ c.

This inequality, however, is insufficient for our
purpose. Accordingly, we return to (1.1): we multi-
ply it by f and integrate by parts to obtain

d

dt
‖fx(t)‖2

2 = (2 + a)
∫ 1

0

f3
xdx− 2ν ‖fxx(t)‖2

2

≤ c ‖fx(t)‖1 ‖fx(t)‖2
∞ − 2ν ‖fxx(t)‖2

2 .

By the Gagliardo-Nirenberg theorem (see e.g., [2, 3])
it holds that

‖fx(t)‖2 ≤ c ‖fx(t)‖2/3
1 ‖fxx(t)‖1/3

2 .

Also, the following inequality is well-known:

‖fx(t)‖∞ ≤ c ‖fx(t)‖1/2
2 ‖fxx(t)‖1/2

2 .

By these inequalities we have

‖fx(t)‖2
∞ ≤ c ‖fxx(t)‖4/3

2 .

Here use has been made of (2.4). We therefore have

d

dt
‖fx(t)‖2

2

≤ c ‖fxx(t)‖4/3
2 − 2ν ‖fxx(t)‖2

2

≤ c

(
δp

p
‖fxx(t)‖4p/3

2 +
1
δqq

)
− 2ν ‖fxx(t)‖2

2 ,

where δ > 0, p > 1, q > 1 and 1/p+1/q = 1. Taking
p = 3/2 and δp = 2pν/c, we obtain

d

dt
‖fx(t)‖2

2 ≤ c.

Consequently ‖fx(t)‖2 is bounded in any bounded
interval of t, which, together with the local existence
theorem, gives us the global existence.

3. Local existence. Let

X =
{
g ∈ L2(0, 1) ;

∫ 1

0

g(x)dx = 0
}
.

Then we show in this section that the equation (1.1)
has a unique solution such that fx ∈ C0([0, T ];X)
for some T > 0.

We start with (2.3) for an arbitrary a. It can be
written as

ut − νuxx = −(fu)x +
3 + a

2
(
u2 − ‖u(t)‖2

2

)
,(3.1)

fx = u, f, u ∈ X,(3.2)

where u(t) ≡ u(·, t) is viewed as a function : [0, T ] →
X. By the Duhamel principle, we can rewrite (3.1)
as follows:

(3.3) u(t) = e−tAu(0) +
∫ t

0

e−(t−s)AF (u(s))ds,

where we have defined A as −ν(d2/dx2) with the
periodic boundary condition, and F is defined as

F (u) = −(fu)x +
3 + a

2
P (u2)

with Py(x) = y(x) −
∫ 1

0
y(ξ)dξ. We now prove

that the integral equation (3.3) has a unique solu-
tion in C0([0, T ];X) for a small T > 0. Note that
“(3.1)& (3.2) ⇐⇒ (3.3)” can be verified in a stan-
dard way (see [4, 5], or [8]).

In order to construct a solution of (3.3), we
choose an arbitrary g ∈ X and fix it. We then define
an operator K by

Ku(t) = e−tAg +
∫ t

0

e−(t−s)AF (u(s))ds.

The existence is proved by showing that the mapping
u → Ku is a contraction mapping of u in Y, where
Y is a closed convex subset of C0([0, T ];X) defined
as
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Y =
{
u ∈ C0([0, T ];X) ;

u(0) = g, max
0≤t≤T

‖u(t)‖2 ≤ 2‖g‖2

}
.

To this end we first recall that −A is a generator
of a contraction semigroup in X, i.e., ‖e−tAu‖2 ≤
‖u‖2. We then follow the standard argument such as
in [4, 5, 8].

Suppose that we are given a u ∈ Y. Then (3.2)
defines f ∈ C0([0, T ];W 1,2(0, 1) ∩ X), where W 1,2

denotes the Sobolev space. It is easy to see that

‖A−1/2(fu)x‖2 = ‖fu‖2 ≤ c‖u‖2
2

and

‖A−1/2P (u2)‖2 ≤ c‖u‖2
2.

We now rewrite Ku as

Ku(t) = e−tAg +
∫ t

0

A1/2e−(t−s)AA−1/2F (u(s))ds,

which gives us

(3.4) ‖Ku(t)‖2 ≤ ‖g‖2 + c

∫ t

0

(t− s)−1/2‖u(s)‖2
2ds.

This and a similar inequality forKu(t)−Ku(t′) show
that Ku ∈ C0([0, T ];X). Note next that u ∈ Y and
(3.4) imply that

‖Ku(t)‖2 ≤ ‖g‖2 + 8c‖g‖2
2

√
t.

Consequently, K sends Y into itself if 8c‖g‖2

√
T ≤

1. We now fix such a T .
Note finally that, for any u ∈ Y and v ∈ Y, we

have

‖A−1/2 (F (u) − F (v)) ‖2 ≤ c (‖u‖2 + ‖v‖2) ‖u− v‖2.

This inequality yields

‖Ku(t) −Kv(t)‖2

≤ c‖g‖2

∫ t

0

(t− s)−1/2‖u(s) − v(s)‖2ds

It then follows that K is a contraction mapping from
Y to itself, if T is sufficiently small.
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