The primitive derivation and freeness of multi-Coxeter arrangements

By Masahiko Yoshinaga
Research Institute for Mathematical Sciences, Kyoto University
Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502
(Communicated by Shigefumi Mori, M. J. A., Sept. 12, 2002)

Abstract

We will prove the freeness of multi-Coxeter arrangements by constructing a basis of the module of vector fields which contact to each reflecting hyperplanes with some multiplicities using K. Saito's theory of primitive derivation.

Key words: Hodge filtration; finite reflection group; Coxeter arrangement; adjoint quotient.

1. Introduction. Let V be a Euclidean space over \mathbf{R} with finite dimension ℓ and inner product I. Let $W \subset \mathrm{O}(V, I)$ be a finite irreducible reflection group and \mathcal{A} the corresponding Coxeter arrangement i.e. the collection of all reflecting hyperplanes of W. For each $H \in \mathcal{A}$, we fix a defining equation $\alpha_{H} \in V^{*}$ of H.

In [5], H. Terao constructed a free basis of $\mathbf{R}[V]-$ module
(1) $\mathrm{D}^{m}(\mathcal{A}):=\left\{\delta \in \operatorname{Der}_{V} \mid \delta \alpha_{H} \in\left(\alpha_{H}^{m}\right), \forall H \in \mathcal{A}\right\}$, ($m \in \mathbf{Z}_{\geq 0}$). The purpose of this paper is to construct a basis by a simpler way using Saito's result and give a generalization.

For given multiplicity $\tilde{m}: \mathcal{A} \rightarrow \mathbf{Z}_{\geq 0}$, we say that the multi-Coxeter arrangement $\mathcal{A}^{(\tilde{m})}$ is free if the module
(2) $\mathrm{D}\left(\mathcal{A}^{(\tilde{m})}\right)$

$$
:=\left\{\delta \in \operatorname{Der}_{V} \mid \delta \alpha_{H} \in\left(\alpha_{H}^{\tilde{m}(H)}\right), \forall H \in \mathcal{A}\right\}
$$

is a free $\mathbf{R}[V]$-module [8]. Then our main result is
Theorem 1. Let \tilde{m} be a multiplicity satisfying $\tilde{m}(H) \in\{0,1\}$ for all $H \in \mathcal{A}$. Suppose the multi-Coxeter arrangement $\mathcal{A}^{(\tilde{m})}$ is free, then $\mathcal{A}^{(\tilde{m}+2 k)}\left(k \in \mathbf{Z}_{\geq 0}\right)$ is also free, where the new multiplicity $\tilde{m}+2 k$ take value $\tilde{m}(H)+2 k$ at $H \in \mathcal{A}$.

We construct a basis in Theorem 7.
We note that $\mathcal{A}^{(\tilde{m})}$ is not necesarily free for \tilde{m} : $\mathcal{A} \rightarrow\{0,1\}$. If we apply Theorem 1 for $\tilde{m}(H) \equiv 0$ or $\tilde{m}(H) \equiv 1$, we obtain the freeness of $\mathrm{D}^{2 k}(\mathcal{A})$ or $\mathrm{D}^{2 k+1}(\mathcal{A})$. Terao's basis is expected to coincide with that of ours.

[^0]The original motivation to study the module $\mathrm{D}\left(\mathcal{A}^{(\tilde{m})}\right)$ came from the study of structures of the relative de Rham cohomology $\mathrm{H}^{*}\left(\Omega_{\mathfrak{g} / S}^{\bullet}\right)$ of the adjoint quotient map $\chi: \mathfrak{g} \rightarrow S:=\mathfrak{g} / / \operatorname{ad}(G)$ of a simple Lie algebra \mathfrak{g}. In the case of $A D E$ type Lie algebras, an isomorphism as $\mathbf{C}[S]\left(=\mathbf{C}[\mathfrak{g}]^{G}=\mathbf{C}[\mathfrak{h}]^{W}\right)$-modules (where \mathfrak{h} is a Cartan subalgebra)

$$
\mathrm{H}^{2}\left(\Omega_{\mathfrak{g} / S}^{\bullet}\right) \cong \mathrm{D}^{5}(\mathcal{A})^{W}
$$

is obtained [7].
But for $B C F G$ type Lie algebras, because the W action on \mathcal{A} is not transitive, $\mathrm{H}^{2}\left(\Omega_{\mathfrak{g} / S}^{\bullet}\right)$ is expected to be isomorphic to the module $\mathrm{D}\left(\mathcal{A}^{(\tilde{m})}\right)^{W}$ with a suitable multiplicity $\tilde{m}: \mathcal{A} \rightarrow \mathbf{Z}_{\geq 0}$ which is not constant.
2. K. Saito's results on primitive derivation. In this section, we fix notations and recall some results.

Let $x_{1}, \ldots, x_{\ell} \in V^{*}$ be a basis of V^{*} and $P_{1}, P_{2}, \cdots, P_{\ell} \in \mathbf{R}[V]^{W}$ be the homogeneous generators of W-invariant polynomials on V such that $\mathbf{R}[V]^{W}=\mathbf{R}\left[P_{1}, P_{2}, \cdots, P_{\ell}\right]$ with

$$
\operatorname{deg} P_{1} \leq \operatorname{deg} P_{2} \leq \cdots \leq \operatorname{deg} P_{\ell}=: h
$$

Then it is classically known [1] that

$$
\begin{equation*}
|\mathcal{A}|=\frac{h \ell}{2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{deg} P_{\ell-1}<h \tag{4}
\end{equation*}
$$

It follows from (4) that the rational vector field (with pole along $\left.\bigcup_{H \in \mathcal{A}} H\right) D:=\left(\partial / \partial P_{\ell}\right)$ on V is uniquely determined up to non-zero constant factor independently on the generators P_{1}, \ldots, P_{ℓ}. We call D the
primitive vector field. If we fix generators P_{1}, \ldots, P_{ℓ}, then $\left(\partial / \partial P_{1}\right), \ldots,\left(\partial / \partial P_{\ell-1}\right)$ are able to be considered as rational vector fields on V. Since the Jacobian is

$$
Q:=\prod_{H \in \mathcal{A}} \alpha_{H} \doteq \frac{\partial\left(P_{1}, \ldots, P_{\ell}\right)}{\partial\left(x_{1}, \ldots, x_{\ell}\right)}
$$

D is symbolically expressed as

$$
D \doteq \frac{1}{Q} \operatorname{det}\left(\begin{array}{cccc}
\frac{\partial P_{1}}{\partial x_{1}} & \cdots & \frac{\partial P_{\ell-1}}{\partial x_{1}} & \frac{\partial}{\partial x_{1}} \\
\vdots & \ddots & \vdots & \vdots \\
\frac{\partial P_{1}}{\partial x_{\ell}} & \cdots & \frac{\partial P_{\ell-1}}{\partial x_{\ell}} & \frac{\partial}{\partial x_{\ell}}
\end{array}\right)
$$

Next we define an affine connection ∇ : $\operatorname{Der}_{V} \times \operatorname{Der}_{V} \rightarrow \operatorname{Der}_{V}$.

Definition 2. For given $\delta_{1}, \delta_{2} \in \operatorname{Der}_{V}$ with $\delta_{2}=\sum_{i=1}^{\ell} f_{i}\left(\partial / \partial x_{i}\right)$,

$$
\nabla_{\delta_{1}} \delta_{2}:=\sum_{i=1}^{\ell}\left(\delta_{1} f_{i}\right) \frac{\partial}{\partial x_{i}}
$$

The connection ∇ can be also characterized by the formula:
(5) $\quad\left(\nabla_{\delta_{1}} \delta_{2}\right) \alpha=\delta_{1}\left(\delta_{2} \alpha\right), \forall$ linear function $\alpha \in V^{*}$.

This formula plays an important role in our computations.

The derivation ∇_{D} by the primitive vector field is particularly important. Define $\mathbf{R}[V]^{W, \tau}:=\{f \in$ $\left.\mathbf{R}[V]^{W} \mid D f=0\right\}=\mathbf{R}\left[P_{1}, \ldots, P_{\ell-1}\right]$. Then ∇_{D} is an $\mathbf{R}[V]^{W, \tau}$-homomorphism. The following decomposition of $\operatorname{Der}_{V}^{W}=\mathrm{D}^{1}(\mathcal{A})^{W}$ has been obtained in [2, 3].

Theorem 3. Let $n \geq 1$, define

$$
\mathcal{G}_{n}:=\left\{\begin{array}{l|l}
\delta \in \operatorname{Der}_{V}^{W} & \left(\nabla_{D}\right)^{n} \delta \in \sum_{i=1}^{\ell} \mathbf{R}[V]^{W, \tau} \frac{\partial}{\partial P_{i}}
\end{array}\right\}
$$

then for every $n \geq 0, \nabla_{D}$ induces an $\mathbf{R}[V]^{W, \tau}$ isomorphism $\mathcal{G}_{n+1} \stackrel{\sim}{\rightarrow} \mathcal{G}_{n}$ and

$$
\mathrm{D}^{1}(\mathcal{A})^{W}=\bigoplus_{n \geq 1} \mathcal{G}_{n}
$$

If we define $\mathcal{H}^{k}:=\bigoplus_{n \geq k} \mathcal{G}_{n}$, then it becomes a rank ℓ free $\mathbf{R}[V]^{W}$-submodule of $\operatorname{Der}_{V}^{W}$, which is called the Hodge filtration.

In particular, $\nabla_{D}: \mathcal{H}^{2} \underset{\rightarrow}{\sim} \mathcal{H}^{1}=\mathrm{D}^{1}(\mathcal{A})^{W}$ is an $\mathbf{R}[V]^{W, \tau}$-isomorphism. All we need in the sequel is the existence of an injection $\nabla_{D}^{-1}: \operatorname{Der}_{V}^{W} \rightarrow \operatorname{Der}_{V}^{W}$.
3. Construction of a basis. We construct a basis of $\mathrm{D}\left(\mathcal{A}^{(2 k+\tilde{m})}\right)$. The following is a key lemma which connects two filtrations, the Hodge filtration and the contact-order filtration.

Lemma 4. Let $\delta^{\prime}, \delta \in \operatorname{Der}_{V}$ be vector fields on V and assume $\nabla_{D} \delta^{\prime}=\delta$. Then for any $H \in \mathcal{A}, \delta \alpha_{H}$ is divisible by α_{H}^{m} if and only if $\delta^{\prime} \alpha_{H}$ is divisible by α_{H}^{m+2}.

Proof. Suppose $\delta^{\prime} \alpha=\alpha^{m^{\prime}} f\left(\right.$ where $\left.\alpha=\alpha_{H}\right)$. Then from (5),

$$
\begin{align*}
& \left(\nabla_{D} \delta^{\prime}\right) \alpha=D\left(\delta^{\prime} \alpha\right) \tag{6}\\
& =\frac{1}{Q} \operatorname{det}\left(\begin{array}{cccc}
\frac{\partial P_{1}}{\partial x_{1}} & \cdots & \frac{\partial P_{\ell-1}}{\partial x_{1}} & \frac{\partial}{\partial x_{1}}\left(\alpha^{m^{\prime}} f\right) \\
\vdots & \ddots & \vdots & \vdots \\
\frac{\partial P_{1}}{\partial x_{\ell}} & \cdots & \frac{\partial P_{\ell-1}}{\partial x_{\ell}} & \frac{\partial}{\partial x_{\ell}}\left(\alpha^{m^{\prime}} f\right)
\end{array}\right) .
\end{align*}
$$

Thus $\delta \alpha$ is divisible by $\alpha^{m^{\prime}-2}$. Further, assume f is not divisible by α, let us show that $\delta \alpha$ is not divisible by $\alpha^{m^{\prime}-1}$. Take a coordinate system $x_{1}, \ldots, x_{\ell-1}, x_{\ell}$ such that $x_{\ell}=\alpha$, then it suffices to show that
$\operatorname{det}\left(\begin{array}{ccc}\frac{\partial P_{1}}{\partial x_{1}} & \cdots & \frac{\partial P_{\ell-1}}{\partial x_{1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial P_{1}}{\partial x_{\ell-1}} & \cdots & \frac{\partial P_{\ell-1}}{\partial x_{\ell-1}}\end{array}\right)$ is not divisible by α.
After taking $\otimes \mathbf{C}$ and restricting to $H_{\mathbf{C}}:=H \otimes \mathbf{C}$, determinant above can be interpreted as the Jacobian of the composed mapping

$$
\begin{aligned}
\phi: & H_{\mathbf{C}}
\end{aligned} \rightarrow \quad \operatorname{Spec} \mathbf{C}[V]^{W, \tau}, ~\left(x_{1}, \ldots, x_{\ell-1}, 0\right) ~ \mapsto\left(P_{1}, \ldots, P_{\ell-1}\right) . ~ \$
$$

On the other hand, since the set

$$
\left\{x \in V \otimes \mathbf{C} \mid P_{1}(x)=\cdots=P_{\ell-1}(x)=0\right\}
$$

is a union of some eigenspaces of Coxeter transformations in W, which are regular, that is, they intersect with $H_{\mathbf{C}}$ only at $0 \in H_{\mathbf{C}}[2,3]$. Hence $\phi^{-1}(0)=$ $\{0\} \subset H_{\mathbf{C}}$, and the Jacobian of ϕ cannot be identically zero.

Remark 5. The precise expression of the Jacobian of ϕ is obtained in [4]. It is equal to the reduced defining equation of the union of hyperplanes $\bigcup_{H^{\prime} \in \mathcal{A} \backslash\{H\}}\left(H \cap H^{\prime}\right)$, on H.

Because of Theorem 3 the operator ∇_{D}^{-1} is well defined on $\operatorname{Der}_{V}^{W}=\mathrm{D}^{1}(\mathcal{A})^{W}$, we have

Lemma 6. Let $\delta \in \operatorname{Der}_{V}^{W}$ be a W-invariant vector field on V. Then for any $H \in \mathcal{A}, \delta \alpha_{H}$ is
divisible by α_{H}^{m} if and only if $\left(\nabla_{D}^{-1} \delta\right) \alpha_{H}$ is divisible by α_{H}^{m+2}.

By induction with $\mathcal{H}^{1}=\mathrm{D}^{1}(\mathcal{A})^{W}$, Lemma 6 indicates

$$
\begin{equation*}
\mathcal{H}^{k}=\nabla_{D}^{-k+1} \mathrm{D}^{1}(\mathcal{A})^{W} \subset \mathrm{D}^{2 k+1}(\mathcal{A})^{W} \tag{7}
\end{equation*}
$$

The converse is also true, which will be proved in $\S 4$.
We denote by $E:=\sum_{i=1}^{\ell} x_{i}\left(\partial / \partial x_{i}\right)$ the Euler vector field. Note that E is contained in $\mathrm{D}^{1}(\mathcal{A})^{W}$, $\nabla_{\delta} E=\delta$ and $\nabla_{E} \delta=(\operatorname{deg} \delta) \delta$ for any homogeneous vector field $\delta \in \operatorname{Der}_{V}$. By Theorem 3, we have a "universal" vector field $\nabla_{D}^{-k} E$.

As in $\S 1$, let $\tilde{m}: \mathcal{A} \rightarrow\{0,1\}$ be a multiplicity and assume that $\delta_{1}, \delta_{2}, \ldots, \delta_{\ell} \in \mathrm{D}\left(\mathcal{A}^{(\tilde{m})}\right)$ be a free basis of the multiarrangement $\mathcal{A}^{(\tilde{m})}$.

Theorem 7. Under the above hypothesis, $\nabla_{\delta_{1}} \nabla_{D}^{-k} E, \ldots, \nabla_{\delta_{\ell}} \nabla_{D}^{-k} E \quad$ form a free basis of $\mathrm{D}\left(\mathcal{A}^{(\tilde{m}+2 k)}\right)$.

Proof. Let $\delta \in \mathrm{D}\left(\mathcal{A}^{(\tilde{m})}\right)$, we first prove $\nabla_{\delta} \nabla_{D}^{-k} E \in \mathrm{D}\left(\mathcal{A}^{(\tilde{m}+2 k)}\right)$. From (7), $\nabla_{D}^{-k} E \in$ $\mathrm{D}^{2 k+1}(\mathcal{A})$, we may assume

$$
\begin{equation*}
\left(\nabla_{D}^{-k} E\right) \alpha=\alpha^{2 k+1} f \tag{8}
\end{equation*}
$$

for $\alpha=\alpha_{H},(H \in \mathcal{A})$. Applying δ to the both sides of (8), we have
(9) $\quad\left(\nabla_{\delta} \nabla_{D}^{-k} E\right) \alpha=\alpha^{2 k}((2 K+1)(\delta \alpha) f+\alpha(\delta f))$.

Since $\delta \alpha$ is divisible by α with multiplicity $\tilde{m}(H) \leq$ 1 , hence $\left(\nabla_{\delta} \nabla_{D}^{-k} E\right) \alpha$ is divisible by $\alpha^{\tilde{m}(H)+2 k}$.

Here we recall G. Ziegler's criterion on freeness of multiarrangements.

Theorem 8 [8]. Let $\tilde{m}: \mathcal{A} \rightarrow \mathbf{Z}_{\geq 0}$ be a multiplicity and $\delta_{1}, \ldots, \delta_{\ell} \in \mathrm{D}\left(\mathcal{A}^{(\tilde{m})}\right)$ be homogeneous and linearly independent over $\mathbf{C}[V]$. Then $\mathcal{A}^{(\tilde{m})}$ is free with basis $\delta_{1}, \ldots, \delta_{\ell}$ if and only if

$$
\sum_{i=1}^{\ell} \operatorname{deg} \delta_{i}=\sum_{H \in \mathcal{A}} \tilde{m}(H)
$$

We compute the degrees of $\nabla_{\delta_{1}} \nabla_{D}^{-k} E, \ldots$, $\nabla_{\delta_{\ell}} \nabla_{D}^{-k} E$,

$$
\begin{align*}
\sum_{i=1}^{\ell} \operatorname{deg}\left(\nabla_{\delta_{i}} \nabla_{D}^{-k} E\right) & =\sum_{i=1}^{\ell}\left(k h+\operatorname{deg} \delta_{i}\right) \tag{10}\\
& =k h \ell+\sum_{i=1}^{\ell} \operatorname{deg} \delta_{i}
\end{align*}
$$

where $h=\operatorname{deg} P_{\ell}$ is the Coxeter number. On the other hand, the sum of multiplicities is

$$
\begin{equation*}
\sum_{H \in \mathcal{A}}(\tilde{m}(H)+2 k)=2 k|\mathcal{A}|+\sum_{H \in \mathcal{A}} \tilde{m}(H) \tag{11}
\end{equation*}
$$

The assumption implies $\sum_{H \in \mathcal{A}} \tilde{m}(H)=\sum_{i=1}^{\ell} \operatorname{deg} \delta_{i}$ and because of (3), we conclude that (10) coincides with (11).

4. Some conclusions.

Lemma 9. $\quad \nabla_{\left(\partial / \partial P_{i}\right)} \mathrm{D}^{2 k+1}(\mathcal{A})^{W} \subset \mathrm{D}^{2 k-1}(\mathcal{A})^{W}$ $(k>0)$.

Proof. We only prove for $i=\ell$, remaining cases can be proved similarly. It is sufficient to show that $\left(\nabla_{D} \delta\right) \alpha_{H_{0}}$ has no poles for any $\delta \in \mathrm{D}^{2 k+1}(\mathcal{A})^{W}$ and $H_{0} \in \mathcal{A}$. By (6), $Q D \delta \alpha_{H_{0}}$ can be divided by $\alpha_{H_{0}}$, so all we have to show is that $Q D \delta \alpha_{H_{0}}$ is divisible by $\beta:=\alpha_{H^{\prime}}$ for all $H^{\prime} \in \mathcal{A} \backslash\left\{H_{0}\right\}$. We denote by $s_{\beta} \in$ W the reflection with respect to the hyperplane $H^{\prime} \subset$ V, then $s_{\beta}(\alpha)$ is expressed in the form $s_{\beta}(\alpha)=\alpha+$ $2 c \beta$ for some $c \in \mathbf{R}$. Apply s_{β} to the function $Q D \delta \alpha$, since D and δ are W-invariant, and $s_{\beta}(Q)=-Q$,

$$
s_{\beta}(Q D \delta \alpha)=-Q D \delta \alpha-2 c Q D \delta \beta
$$

By using the equation $s_{\beta}(Q D \delta \beta)=Q D \delta \beta$, we have

$$
s_{\beta}(Q D \delta \alpha+c Q D \delta \beta)=-(Q D \delta \alpha+c Q D \delta \beta)
$$

So $Q D \delta \alpha+c Q D \delta \beta$ is divisible by β, but from the first half of this proof, $c Q D \delta \beta$ is divisible by β, and the other term $Q D \delta \alpha$ is also divisible by β.

As a consequence of induction, we have
Corollary $10[6] . \quad \mathcal{H}^{k}=\mathrm{D}^{2 k+1}(\mathcal{A})^{W}$.
Finally, we apply Theorem 1 to $\tilde{m} \equiv 0$ or $\tilde{m} \equiv$ 1 , since both $\mathrm{D}^{0}(\mathcal{A})=\operatorname{Der}_{V}$ and $\mathrm{D}^{1}(\mathcal{A})$ are free, we obtain

Corollary $11[5] . \quad \mathrm{D}^{m}(\mathcal{A})$ is free for all $m \geq$ 0.

Acknowledgements. I am grateful to Professor Kyoji Saito and Professor Hiroaki Terao for their useful comments.

References

[1] Bourbaki, N.: Groupes et Algèbres de Lie. Hermann, Paris (1968).
[2] Saito, K.: On a linear structure of the quotient variety by a finite reflexion group. Publ. Res. Inst. Math. Sci., 29, 535-579 (1993).
[3] Saito, K.: Finite reflexion group and related geometry (A motivation to the period mapping for primitive forms). Lecture note, Res. Inst. Math. Sci., Kyoto University, Kyoto (2000).
[4] Saito, K.: The polyhedron dual to the chamber decomposition for a finite Coxeter group. (Preprint).
[5] Terao, H.: Multiderivations of Coxeter arrangements. Invent. Math., 148, 659-674 (2002).
[6] Terao, H.: The Hodge filtration and contact-order filtration of derivations of Coxeter arrangements. (math.CO/0205058). (Preprint).
[7] Yoshinaga, M.: On the relative de Rham cohomology of adjoint quotient maps. Master's Thesis, Kyoto University (2002). (In Japanese).
[8] Ziegler, G. M.: Multiarrangements of hyperplanes and their freeness. Singularities (Iowa City, IA, 1986), Contemp. Math., 90, 345-359, Amer. Math. Soc., Providence, RI (1989).

[^0]: 2000 Mathematics Subject Classification. Primary 32S22; Secondary 05E15.

