By Masahiko Yoshinaga

Research Institute for Mathematical Sciences, Kyoto University Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Communicated by Shigefumi MORI, M. J. A., Sept. 12, 2002)

Abstract: We will prove the freeness of multi-Coxeter arrangements by constructing a basis of the module of vector fields which contact to each reflecting hyperplanes with some multiplicities using K. Saito's theory of primitive derivation.

Key words: Hodge filtration; finite reflection group; Coxeter arrangement; adjoint quotient.

1. Introduction. Let V be a Euclidean space over \mathbf{R} with finite dimension ℓ and inner product I. Let $W \subset O(V, I)$ be a finite irreducible reflection group and \mathcal{A} the corresponding Coxeter arrangement i.e. the collection of all reflecting hyperplanes of W. For each $H \in \mathcal{A}$, we fix a defining equation $\alpha_H \in V^*$ of H.

In [5], H. Terao constructed a free basis of $\mathbf{R}[V]$ -module

(1)
$$D^m(\mathcal{A}) := \{ \delta \in Der_V \mid \delta \alpha_H \in (\alpha_H^m), \forall H \in \mathcal{A} \},\$$

 $(m \in \mathbb{Z}_{\geq 0})$. The purpose of this paper is to construct a basis by a simpler way using Saito's result and give a generalization.

For given multiplicity $\tilde{m} : \mathcal{A} \to \mathbf{Z}_{\geq 0}$, we say that the multi-Coxeter arrangement $\mathcal{A}^{(\tilde{m})}$ is free if the module

(2)
$$D(\mathcal{A}^{(\tilde{m})})$$

:= { $\delta \in Der_V \mid \delta \alpha_H \in (\alpha_H^{\tilde{m}(H)}), \forall H \in \mathcal{A}$ }

is a free $\mathbf{R}[V]$ -module [8]. Then our main result is

Theorem 1. Let \tilde{m} be a multiplicity satisfying $\tilde{m}(H) \in \{0,1\}$ for all $H \in \mathcal{A}$. Suppose the multi-Coxeter arrangement $\mathcal{A}^{(\tilde{m})}$ is free, then $\mathcal{A}^{(\tilde{m}+2k)}$ $(k \in \mathbb{Z}_{\geq 0})$ is also free, where the new multiplicity $\tilde{m} + 2k$ take value $\tilde{m}(H) + 2k$ at $H \in \mathcal{A}$.

We construct a basis in Theorem 7.

We note that $\mathcal{A}^{(\tilde{m})}$ is not necessarily free for \tilde{m} : $\mathcal{A} \to \{0, 1\}$. If we apply Theorem 1 for $\tilde{m}(H) \equiv 0$ or $\tilde{m}(H) \equiv 1$, we obtain the freeness of $D^{2k}(\mathcal{A})$ or $D^{2k+1}(\mathcal{A})$. Terao's basis is expected to coincide with that of ours. The original motivation to study the module $D(\mathcal{A}^{(\tilde{m})})$ came from the study of structures of the relative de Rham cohomology $H^*(\Omega^{\bullet}_{\mathfrak{g}/S})$ of the adjoint quotient map $\chi : \mathfrak{g} \to S := \mathfrak{g}//\mathrm{ad}(G)$ of a simple Lie algebra \mathfrak{g} . In the case of ADE type Lie algebras, an isomorphism as $\mathbf{C}[S](=\mathbf{C}[\mathfrak{g}]^G = \mathbf{C}[\mathfrak{h}]^W)$ -modules (where \mathfrak{h} is a Cartan subalgebra)

$$\mathrm{H}^2(\Omega^{\bullet}_{\mathfrak{g}/S}) \cong \mathrm{D}^5(\mathcal{A})^W$$

is obtained [7].

But for BCFG type Lie algebras, because the W action on \mathcal{A} is not transitive, $\mathrm{H}^{2}(\Omega_{\mathfrak{g}/S}^{\bullet})$ is expected to be isomorphic to the module $\mathrm{D}(\mathcal{A}^{(\tilde{m})})^{W}$ with a suitable multiplicity $\tilde{m} : \mathcal{A} \to \mathbf{Z}_{\geq 0}$ which is not constant.

2. K. Saito's results on primitive derivation. In this section, we fix notations and recall some results.

Let $x_1, \ldots, x_{\ell} \in V^*$ be a basis of V^* and $P_1, P_2, \cdots, P_{\ell} \in \mathbf{R}[V]^W$ be the homogeneous generators of W-invariant polynomials on V such that $\mathbf{R}[V]^W = \mathbf{R}[P_1, P_2, \cdots, P_{\ell}]$ with

$$\deg P_1 \leq \deg P_2 \leq \cdots \leq \deg P_\ell =: h.$$

Then it is classically known [1] that

$$|\mathcal{A}| = \frac{h\ell}{2}$$

and

(4)
$$\deg P_{\ell-1} < h.$$

It follows from (4) that the rational vector field (with pole along $\bigcup_{H \in \mathcal{A}} H$) $D := (\partial/\partial P_{\ell})$ on V is uniquely determined up to non-zero constant factor independently on the generators P_1, \ldots, P_{ℓ} . We call D the

²⁰⁰⁰ Mathematics Subject Classification. Primary 32S22; Secondary 05E15.

primitive vector field. If we fix generators P_1, \ldots, P_ℓ , then $(\partial/\partial P_1), \ldots, (\partial/\partial P_{\ell-1})$ are able to be considered as rational vector fields on V. Since the Jacobian is

$$Q := \prod_{H \in \mathcal{A}} \alpha_H \doteq \frac{\partial(P_1, \dots, P_\ell)}{\partial(x_1, \dots, x_\ell)},$$

D is symbolically expressed as

$$D \doteq \frac{1}{Q} \det \begin{pmatrix} \frac{\partial P_1}{\partial x_1} & \cdots & \frac{\partial P_{\ell-1}}{\partial x_1} & \frac{\partial}{\partial x_1} \\ \vdots & \ddots & \vdots & \vdots \\ \frac{\partial P_1}{\partial x_\ell} & \cdots & \frac{\partial P_{\ell-1}}{\partial x_\ell} & \frac{\partial}{\partial x_\ell} \end{pmatrix}.$$

Next we define an affine connection ∇ : $\operatorname{Der}_V \times \operatorname{Der}_V \to \operatorname{Der}_V.$

Definition 2. For given $\delta_1, \delta_2 \in \text{Der}_V$ with $\delta_2 = \sum_{i=1}^{\ell} f_i(\partial/\partial x_i),$

$$\nabla_{\delta_1} \delta_2 := \sum_{i=1}^{\ell} (\delta_1 f_i) \frac{\partial}{\partial x_i}.$$

The connection ∇ can be also characterized by the formula:

(5) $(\nabla_{\delta_1} \delta_2) \alpha = \delta_1(\delta_2 \alpha), \forall \text{ linear function } \alpha \in V^*.$

This formula plays an important role in our computations.

The derivation ∇_D by the primitive vector field is particularly important. Define $\mathbf{R}[V]^{W,\tau} := \{f \in$ $\mathbf{R}[V]^W \mid Df = 0\} = \mathbf{R}[P_1, \dots, P_{\ell-1}].$ Then ∇_D is an $\mathbf{R}[V]^{W,\tau}$ -homomorphism. The following decomposition of $\operatorname{Der}_V^W = \operatorname{D}^1(\mathcal{A})^W$ has been obtained in [2, 3].

Theorem 3. Let $n \ge 1$, define

$$\mathcal{G}_n := \left\{ \delta \in \operatorname{Der}_V^W \mid (\nabla_D)^n \delta \in \sum_{i=1}^{\ell} \mathbf{R}[V]^{W,\tau} \frac{\partial}{\partial P_i} \right\},\$$

then for every $n \geq 0, \nabla_D$ induces an $\mathbf{R}[V]^{W,\tau}$ isomorphism $\mathcal{G}_{n+1} \xrightarrow{\sim} \mathcal{G}_n$ and

$$\mathrm{D}^1(\mathcal{A})^W = \bigoplus_{n \ge 1} \mathcal{G}_n.$$

If we define $\mathcal{H}^k := \bigoplus_{n > k} \mathcal{G}_n$, then it becomes a rank ℓ free $\mathbf{R}[V]^W$ -submodule of Der_V^W , which is called the Hodge filtration.

In particular, $\nabla_D : \mathcal{H}^2 \xrightarrow{\sim} \mathcal{H}^1 = D^1(\mathcal{A})^W$ is an $\mathbf{R}[V]^{W,\tau}$ -isomorphism. All we need in the sequel is the existence of an injection $\nabla_D^{-1} : \operatorname{Der}_V^W \to \operatorname{Der}_V^W$.

3. Construction of a basis. We construct a basis of $D(\mathcal{A}^{(2k+\tilde{m})})$. The following is a key lemma which connects two filtrations, the Hodge filtration and the contact-order filtration.

Lemma 4. Let $\delta', \delta \in \text{Der}_V$ be vector fields on V and assume $\nabla_D \delta' = \delta$. Then for any $H \in \mathcal{A}, \, \delta \alpha_H$ is divisible by α_H^m if and only if $\delta' \alpha_H$ is divisible by α_H^{m+2} .

Proof. Suppose $\delta' \alpha = \alpha^{m'} f$ (where $\alpha = \alpha_H$). Then from (5),

$$(5) \quad (\nabla_D \delta') \alpha = D(\delta' \alpha) \\ = \frac{1}{Q} \det \begin{pmatrix} \frac{\partial P_1}{\partial x_1} & \cdots & \frac{\partial P_{\ell-1}}{\partial x_1} & \frac{\partial}{\partial x_1} (\alpha^{m'} f) \\ \vdots & \ddots & \vdots & \vdots \\ \frac{\partial P_1}{\partial x_\ell} & \cdots & \frac{\partial P_{\ell-1}}{\partial x_\ell} & \frac{\partial}{\partial x_\ell} (\alpha^{m'} f) \end{pmatrix}.$$

Thus $\delta \alpha$ is divisible by $\alpha^{m'-2}$. Further, assume f is not divisible by α , let us show that $\delta \alpha$ is not divisible by $\alpha^{m'-1}$. Take a coordinate system $x_1, \ldots, x_{\ell-1}, x_{\ell}$ such that $x_{\ell} = \alpha$, then it suffices to show that

$$\det \begin{pmatrix} \frac{\partial P_1}{\partial x_1} & \cdots & \frac{\partial P_{\ell-1}}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial P_1}{\partial x_{\ell-1}} & \cdots & \frac{\partial P_{\ell-1}}{\partial x_{\ell-1}} \end{pmatrix}$$
 is not divisible by α .

After taking $\otimes \mathbf{C}$ and restricting to $H_{\mathbf{C}} := H \otimes \mathbf{C}$, determinant above can be interpreted as the Jacobian of the composed mapping

$$\phi: \qquad H_{\mathbf{C}} \qquad \rightarrow \quad \operatorname{Spec} \mathbf{C}[V]^{W,\tau}$$

 $(x_1, \ldots, x_{\ell-1}, 0) \mapsto (P_1, \ldots, P_{\ell-1}).$

On the other hand, since the set

$$\{x \in V \otimes \mathbf{C} \mid P_1(x) = \dots = P_{\ell-1}(x) = 0\}$$

is a union of some eigenspaces of Coxeter transformations in W, which are regular, that is, they intersect with $H_{\mathbf{C}}$ only at $0 \in H_{\mathbf{C}}$ [2, 3]. Hence $\phi^{-1}(0) =$ $\{0\} \subset H_{\mathbf{C}}$, and the Jacobian of ϕ cannot be identically zero.

Remark 5. The precise expression of the Jacobian of ϕ is obtained in [4]. It is equal to the reduced defining equation of the union of hyperplanes $\bigcup_{H' \in \mathcal{A} \setminus \{H\}} (H \cap H'), \text{ on } H.$

Because of Theorem 3 the operator ∇_D^{-1} is well defined on $\operatorname{Der}_{V}^{W} = \operatorname{D}^{1}(\mathcal{A})^{W}$, we have **Lemma 6.** Let $\delta \in \operatorname{Der}_{V}^{W}$ be a W-invariant

vector field on V. Then for any $H \in \mathcal{A}, \ \delta \alpha_H$ is

No. 7]

divisible by α_H^m if and only if $(\nabla_D^{-1}\delta)\alpha_H$ is divisible by α_H^{m+2} .

By induction with $\mathcal{H}^1 = D^1(\mathcal{A})^W$, Lemma 6 indicates

(7)
$$\mathcal{H}^k = \nabla_D^{-k+1} \mathrm{D}^1(\mathcal{A})^W \subset \mathrm{D}^{2k+1}(\mathcal{A})^W$$

The converse is also true, which will be proved in §4.

We denote by $E := \sum_{i=1}^{\ell} x_i (\partial/\partial x_i)$ the Euler vector field. Note that E is contained in $D^1(\mathcal{A})^W$, $\nabla_{\delta} E = \delta$ and $\nabla_E \delta = (\deg \delta) \delta$ for any homogeneous vector field $\delta \in \text{Der}_V$. By Theorem 3, we have a "universal" vector field $\nabla_D^{-k} E$.

As in §1, let $\tilde{m} : \mathcal{A} \to \{0,1\}$ be a multiplicity and assume that $\delta_1, \delta_2, \ldots, \delta_\ell \in D(\mathcal{A}^{(\tilde{m})})$ be a free basis of the multiarrangement $\mathcal{A}^{(\tilde{m})}$.

Theorem 7. Under the above hypothesis, $\nabla_{\delta_1} \nabla_D^{-k} E, \ldots, \nabla_{\delta_\ell} \nabla_D^{-k} E$ form a free basis of $D(\mathcal{A}^{(\tilde{m}+2k)})$.

Proof. Let $\delta \in D(\mathcal{A}^{(\tilde{m})})$, we first prove $\nabla_{\delta} \nabla_{D}^{-k} E \in D(\mathcal{A}^{(\tilde{m}+2k)})$. From (7), $\nabla_{D}^{-k} E \in D^{2k+1}(\mathcal{A})$, we may assume

(8)
$$(\nabla_D^{-k} E)\alpha = \alpha^{2k+1} f$$

for $\alpha = \alpha_H$, $(H \in \mathcal{A})$. Applying δ to the both sides of (8), we have

(9)
$$(\nabla_{\delta}\nabla_{D}^{-k}E)\alpha = \alpha^{2k}((2K+1)(\delta\alpha)f + \alpha(\delta f)).$$

Since $\delta \alpha$ is divisible by α with multiplicity $\tilde{m}(H) \leq 1$, hence $(\nabla_{\delta} \nabla_{D}^{-k} E) \alpha$ is divisible by $\alpha^{\tilde{m}(H)+2k}$.

Here we recall G. Ziegler's criterion on freeness of multiarrangements.

Theorem 8 [8]. Let $\tilde{m} : \mathcal{A} \to \mathbf{Z}_{\geq 0}$ be a multiplicity and $\delta_1, \ldots, \delta_\ell \in D(\mathcal{A}^{(\tilde{m})})$ be homogeneous and linearly independent over $\mathbf{C}[V]$. Then $\mathcal{A}^{(\tilde{m})}$ is free with basis $\delta_1, \ldots, \delta_\ell$ if and only if

$$\sum_{i=1}^{\ell} \deg \delta_i = \sum_{H \in \mathcal{A}} \tilde{m}(H)$$

We compute the degrees of $\nabla_{\delta_1} \nabla_D^{-k} E, \ldots, \nabla_{\delta_\ell} \nabla_D^{-k} E,$

(10)
$$\sum_{i=1}^{\ell} \deg(\nabla_{\delta_i} \nabla_D^{-k} E) = \sum_{i=1}^{\ell} (kh + \deg \delta_i)$$
$$= kh\ell + \sum_{i=1}^{\ell} \deg \delta_i,$$

where $h = \deg P_{\ell}$ is the Coxeter number. On the other hand, the sum of multiplicities is

(11)
$$\sum_{H \in \mathcal{A}} (\tilde{m}(H) + 2k) = 2k|\mathcal{A}| + \sum_{H \in \mathcal{A}} \tilde{m}(H).$$

The assumption implies $\sum_{H \in \mathcal{A}} \tilde{m}(H) = \sum_{i=1}^{\ell} \deg \delta_i$ and because of (3), we conclude that (10) coincides with (11).

4. Some conclusions.

Lemma 9. $\nabla_{(\partial/\partial P_i)} \mathbf{D}^{2k+1}(\mathcal{A})^W \subset \mathbf{D}^{2k-1}(\mathcal{A})^W$ (k > 0).

Proof. We only prove for $i = \ell$, remaining cases can be proved similarly. It is sufficient to show that $(\nabla_D \delta) \alpha_{H_0}$ has no poles for any $\delta \in D^{2k+1}(\mathcal{A})^W$ and $H_0 \in \mathcal{A}$. By (6), $QD\delta\alpha_{H_0}$ can be divided by α_{H_0} , so all we have to show is that $QD\delta\alpha_{H_0}$ is divisible by $\beta := \alpha_{H'}$ for all $H' \in \mathcal{A} \setminus \{H_0\}$. We denote by $s_\beta \in$ W the reflection with respect to the hyperplane $H' \subset$ V, then $s_\beta(\alpha)$ is expressed in the form $s_\beta(\alpha) = \alpha +$ $2c\beta$ for some $c \in \mathbf{R}$. Apply s_β to the function $QD\delta\alpha$, since D and δ are W-invariant, and $s_\beta(Q) = -Q$,

$$s_{\beta}(QD\delta\alpha) = -QD\delta\alpha - 2cQD\delta\beta.$$

By using the equation $s_{\beta}(QD\delta\beta) = QD\delta\beta$, we have

$$s_{\beta}(QD\delta\alpha + cQD\delta\beta) = -(QD\delta\alpha + cQD\delta\beta).$$

So $QD\delta\alpha + cQD\delta\beta$ is divisible by β , but from the first half of this proof, $cQD\delta\beta$ is divisible by β , and the other term $QD\delta\alpha$ is also divisible by β .

As a consequence of induction, we have Corollary 10 [6]. $\mathcal{H}^k = D^{2k+1}(\mathcal{A})^W$.

Finally, we apply Theorem 1 to $\tilde{m} \equiv 0$ or $\tilde{m} \equiv 1$, since both $D^0(\mathcal{A}) = Der_V$ and $D^1(\mathcal{A})$ are free, we obtain

Corollary 11 [5]. $D^m(\mathcal{A})$ is free for all $m \geq 0$.

Acknowledgements. I am grateful to Professor Kyoji Saito and Professor Hiroaki Terao for their useful comments.

References

- Bourbaki, N.: Groupes et Algèbres de Lie. Hermann, Paris (1968).
- Saito, K.: On a linear structure of the quotient variety by a finite reflexion group. Publ. Res. Inst. Math. Sci., 29, 535–579 (1993).
- [3] Saito, K.: Finite reflexion group and related geometry (A motivation to the period mapping for primitive forms). Lecture note, Res. Inst. Math. Sci., Kyoto University, Kyoto (2000).
- [4] Saito, K.: The polyhedron dual to the chamber decomposition for a finite Coxeter group. (Preprint).

- [5] Terao, H.: Multiderivations of Coxeter arrangements. Invent. Math., 148, 659–674 (2002).
- [6] Terao, H.: The Hodge filtration and contact-order filtration of derivations of Coxeter arrangements. (math.CO/0205058). (Preprint).
- Yoshinaga, M.: On the relative de Rham cohomology of adjoint quotient maps. Master's Thesis, Kyoto University (2002). (In Japanese).
- [8] Ziegler, G. M.: Multiarrangements of hyperplanes and their freeness. Singularities (Iowa City, IA, 1986), Contemp. Math., 90, 345–359, Amer. Math. Soc., Providence, RI (1989).