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Fano threefolds with wild conic bundle structures
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Abstract:

We classify smooth Fano threefolds with wild conic bundle structures in char-

acteristic 2 without using the general classification methods of Fano threefolds. General results on
wild hypersurface bundles of degree p are also obtained.

Key words:

1. Introduction. In characteristic 0, smooth
Fano threefolds with Picard number p = 1 were clas-
sified by V. A. Iskovskikh and V. V. Shokurov. The
case p > 1 was classified by S. Mori and S. Mukai us-
ing the classification of p = 1 case and the extremal
rays.

J. Kolldr [1] extended the theory of extremal
rays [2] to arbitrary positive characteristic. Based
on it, N. I. Shepherd-Barron [7] extended the clas-
sification of smooth Fano threefolds with p = 1 to
positive characteristic along K. Takeuchi’s numeri-
cal approach [§].

Once the extremal rays and the classification of
p = 1 case are available, many of the arguments of
Mori and Mukai [3-5] for p > 1 work in positive
characteristic because they are basically numerical
computations. N. Saito gave a proof of the case p =
2 in positive characteristic, which was different from
the one in [4]. The Mori-Mukai numerical arguments
might not work in characteristic 2 for wild conic bun-
dles if the degree of the discriminant locus is involved
since the discriminant locus does not make sense and
its ‘virtual’ degree might be negative.

In this paper, we give a simple treatment of such
wild conic bundles in a more general setting. We
classify smooth Fano threefolds with wild conic bun-
dle structures (Corollary 8) without using general
classification theory of Fano threefolds mentioned
above. Combined with our result, we think the ar-
guments of [3-5] work in characteristic 2 as well.
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2. Wild hypersurface bundles of degree
p. We work over an algebraically closed field &k of
characteristic p > 0. Let X, S be smooth irreducible
varieties over k with dimS = d, dim X = d + r and
f X — S aprojective flat morphism with M a rel-
atively very ample divisor such that X is embedded
inm:Pg(E) — S, where E = f,M. Let £ be the
tautological line bundle of Pg(E).

We say that f is a wild hypersurface bundle of
degree p if every geometric fiber f~1(s) is defined in
P(E;) by 2P = 0 for some non-zero = € Ej.

In this case, there exists a Cartier divisor L on
S such that X ~ p& + 7L, or X is defined by ¢ €
HY(S,EP ® L) C H°(S, SP(E) ® L) such that Ogy
is a subbundle of E? ® L. In the above, SP(F) is the
p-th symmetric product of E and EP C SP(FE) the
p-th power of E, or equivalently EP = F*FE, where
F:S — S is the p-th power endomorphism of S.

Theorem 1. Let f : X — S be a wild hy-
persurface bundle of degree p with embedding X C
Ps(E) as above. Then ¢ induces a surjective Og-
homomorphism

a:Ts - EP @pgs L/Ose,

where Ts denotes the tangent bundle of S.

In particular, d > r+1 and if d=1r+1 then «
s an 1somorphism.

Proof. Let U be an arbitrary affine open set
of S, and D € Tg(U) an arbitrary k-derivation of
Os(U). Since D(zP) = 0 for every x € E(U), D
induces a derivation Dy : EP — EP on U. D also
induces a derivation Dy : L — K¢ into the constant
sheaf K¢ of function field of S. As a tensor product,
D induces D3 : EP @, L — EP ®04 Rs by D3(a ®
b) = D1(a) ® b+ a ® Da(b) on U because Ds(ar ®
b) = Ds3(a ® rb) for r € Og.

We thus have an element D3 () + sy € (EP ®
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Rs/Rsp)(U) and hence an Og-homomorphism 3 :
Ts — EP ® ﬁs/ﬁs(p.

Since Ogy is a subbundle of EP ® L, we have an
injection of Og-modules

EP ® L)Ogp — EP @ Rg/Rsp

and see that the image of 3 is contained in EP ®
L/Osp because 3(D) = Ds(p) + Rsp. Hence we
have « as required. We note that if p = Y, a;a? ® ¢
then (D) = >, D(a;)z? ® £ mod Ogep.

It remains to show that « is surjective. Let s €
S be a closed point, 01,...,04 a basis of the stalk
Tss at s and ¢ a generator of L ® Ogs. We can
write ¢ = ¢’ @ ¢ with ¢’ € EP ® Og s. The Jacobian
criterion says that the simultaneous solutions of ¢’ =
01 = -+ = g’ = 0 form the singular locus of
X over a neighborhood of s. Since X is assumed
nonsingular, there exist no solutions. This means
that o' ® £,010' @ £,...,040" ® £ form a basis of
EP ® L, which proves that « is surjective at s. The
rest is obvious. ]

Remark 2. For a proper morphism f : X —
S to be a wild hypersurface bundle of degree p, the
existence of M (or the embedding X C Pg(F)) is a
non-trivial condition. However if p = r + 1 then M
always exists because M ~y —Kx. In case p = 2
and r = 1, a wild hypersurface bundle f of degree 2
is also called a wild conic bundle.

3. Characterization of the base. We
maintain the same notation and assumptions as in
Theorem 1.

Proposition 3. Assume that d =r+1. Then
we have

—Ks ~pei(E) + (r+2)L,
—Kx ~(r+2-p)§+ f*((p—1Der(E) + (r+1)L),
fel(=Kxys)™) = —(p—1)(r+2—-p)"(—Ks),
f((=Ex)™) = (pr + 1)(r + 2 — p)" (- Ks),

where = means the numerical equivalence and
(—Kx/s)"tt, (—Kx)"™ denote powers as cycles.
Proof. We see —Kg ~ pc1(E) + (r + 2)L by
Theorem 1. One can reduce the rest to this equiva-
lence relation through simple computations using the
equivalence relations —Kp(gy/s ~ (r42){—n"c1(E),
X ~p&+ frL. Ol
Comparing the formula in Proposition 3 with

+
+

the usual conic bundle case Ay = — f*Kf( /s =
—f+K% — 4Kg (Ay is the discriminant locus) [4,
Proposition 6.2], we see that the wild conic bundle
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case is easier than the conic bundle case, and we can
virtually set Ay = —Kg for the compatibility of for-
mulas and treatments.

The following is much easier than the usual conic
bundle case of Fano threefolds.

Corollary 4. Assume that d=r+1>1 and
X is a Fano manifold. Then r+ 2 > p and —Kg is
ample.

Proof. Since Kx|aberof f =~ O(p — 1 — 2), we
have r+2 > p. Since —Kx is ample, — Kg is numer-
ically positive by Proposition 3. Again by ampleness
of —Kx, the cone of curves NFE(X) is spanned by a
finite number of irreducible curves [2], and so is its
image NE(S). Thus NE(S) is closed and —Kg is
ample by Kleiman’s criterion. Ol

4. Classification of X. Maintaining the
notation of Section 2, we will classify wild hyper-
surface bundles of degree p in a few settings. Our
approach is to study the exact sequence:

(%) 0—-0g—FEPQ®L—Ts— 0.

Proposition 5. Let f: X — S be a wild hy-
persurface bundle of degree p such that d = r + 1.
Assume that S contains a rational curve with nor-
malization C ~ Pl and that the restriction Tx @ O¢
of Ts to C has a splitting of the form

Ts®@0c ~ O(—1)% -1 0% g0(1)%* O(2)P*

(ao,...,CLQ Z 0)
Then we have the following.
1. Case (x) ® O¢ is non-split: ag = 0, ag = 1,
EPRL®0c ~ O(-1)%-1 ¢ O(1)%(@+2) | Jf
a_1 > 0, then p = 2 and there is a section s :
C — X over C such that (Kx - s(C)) <0,
2. Case (x)@O¢ is split: p=2,a_1 =a1 =0 and
E?® L ® Oc ~ 0%@tl) ¢ 0(2)%e2,
Proof. We note first that as > 0 by To =~
00(2) CcTs ®Oc.
We treat the case (x) ® O¢ is non-split. Then

EP @ L®0Oc ~0(-1)%-1 ¢ 0%
©O(1)% @+ g O(2)®(e2=1),

Since E ® O¢ is a direct sum of line bundles, we see
degL = 1 (mod p). Hence none of O(2),0 can be
a component of EP @ L ® O¢ and ag = 0 and as =
1. Assume that a_qy > 0. Then p =2by -1 =1
(mod p). Let deg L ® O¢ = 1 + 2z for some integer
z. Then
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E®Oc ~0(-1— )% & O(—z)®@+2),

Let s : C — Pg(E) be the section of w over C' such
that s*¢ corresponds to the projection of £ ® O¢ to
O(—1 —z). Then (s(C) &) = —1 — 2z and (s(C) -
a(F)) =—-(14x)a—1—xz(a1+2). Thus (s(C)-X) =
(s(C)-26+7*L) = =1 < 0. Hence s(C) C X and we
see that (s(C)-—Kx)=1—-a_1 <0byr=a_1+a;
and Proposition 3.

It remains to treat the case (*x) ® O¢ is split.
Then

EPQL®0Oc ~ 0(_1)@(1,1 ® O®(ao+1)
B 0(1)%" & 0(2)%*.

We have similarly a1 = a1 =0and p=2by 2=0
(mod p). Ul

The following was proved in [7, Proposition
10.1]. We give a different proof.

Corollary 6. Let X be a Fano threefold in
characteristic 2 with a wild conic bundle structure
f:X — S. Then S is isomorphic to P% or P! x P!,

Proof. By Corollary 4, S is a del Pezzo surface.
Hence it is enough to derive a contradiction assuming
that there is a (—1)-curve C on S.

Since Ts ® O¢ ~ O(—1) @ O(2), we have a con-
tradiction by Proposition 5. |

We can classify wild hypersurface bundle of de-
gree p over simple bases.

Theorem 7. Let f: X — S be a wild hyper-
surface bundle of degree p such thatd =r+1 > 1
and keep the notation of Section 2. If S is a product
of projective spaces, we have only two cases.

1. Case S ~P?: E ~ (’)g?(dﬂ) and L ~ Og(1)
modulo tensoring E with a line bundle on S, and

X is a smooth diwisor of P¢ x P of bidegree

(L, p).

2. Case S ~ (PY: p = 2, B ~ O5 @

(@le p;O(1)) and L ~ Og modulo tensoring

E with o line bundle on S, where p; : S — P!

is the i-th projection. X is a diwisor of Ps(FE)

such that X ~ 2¢.

Proof. First, we consider the case S ~ P9, Let
C C S be a line. Then Ts ® O¢ ~ O(1)®d-1) g
O(2). Then (%) ® O¢ is non-split by Proposition 5.
Hence (x) is non-split and () is the standard ex-
act sequence for Ts and EP ® L ~ Og(1)®(d+D)
since H'(S, (Ts)*) ~ k. Thus EP =~ (’)g?(dﬂ) and
L ~ Og(1) (modulo tensoring F with a line bun-
dle). It remains to show that F ~ (’)g?(dﬂ). This
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follows once we show that F is a direct sum of
line bundles. Since Og is a direct summand of
F.Og ~ @<, j<pOs(—i—j), E is a direct summand
of F.(F*F) ~ E ® F.Og. Since F*E ~ F*(direct
sum of line bundles), F,F*E is also a direct sum of
line bundles. Hence F is a direct sum of line bundles
and we are done in this case.

Next, we assume S ~ P" x T with n, dimT > 0,
and let C be (a line) x (a point). Then Ts ® O¢ ~
0%dnT ¢ 0(1)®(=1) ¢ O(2). Hence (x) ® O¢ is
split, p = 2 and n = 1 by Proposition 5. Hence S is
the product of P1.

We note Tg ~ @;.1:1 p;O(2) and H'(S, (Ts)*) ~
@pr H (P!, O(-2)). Hence the splitting of the re-
strictions of (x) above implies the splitting of (x).
Hence E2@ L~ O & (@, prO(2)), and E2 ~ O @
(B, p;O(2)) and L ~ Og. The rest is similar to
the case S ~ P9, U

Corollary 8. Let X be a Fano threefold in
characteristic 2 with a wild conic bundle structure
f:X — S. Then we have one of the following.

1. Case S ~ P?2: X is a divisor of P2 x P? of
bidegree (1,2).

2. Case S ~ P! x P': X is a divisor of P =
Ps(O(1,0) ® O(0,1) & O) such that X ~ 2€.
This follows from Theorem 7 except that we

need to show that X given in case (2) is Fano. This
is however obvious from —Kx ~ & + f*O(1,1).

Remark 9. The case (1) was proved and the
case (2) was mentioned as an example in [6]. The
case (1) should ‘belong’ to [3, Table 2, n° 24], and the
case (2) to Table 3, n° 10, which are in characteristic
0. In the case (2), the equivalence of our description
and those in [3, 6] requires some explanation.

Remark 10. Let S, P, X beasin Corollary 8,
Case (2). These can be described as follows: Let
xo,x1 (resp. yo,y1) be variables of bidegree (1,0)
(resp. (0,1)). Let Zy, Z1, Z2 be variables of bidegree
(-1,0), (0,-1), (0,0). Let ao(xo, 1), a1(yo,y1) be
homogeneous polynomials of degree 2 without mul-
tiple factors. Then X is defined by

ao(x) 25 + a1 (y) 27 + 23 = 0.

For each 4,7 = 0,1, we consider the open set U; ; C
S = P! x P! defined by xy; # 0, and X; ; over U, ;
is given by coordinates (x1—;/x:, y1—;/y;) X (x:Zo :
y;Z1 : Z3) with one equation

X
ag <—> (xiZO)Q +ar <£> (ij1)2 + Z22 =0.
T Yj
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Furthermore, the birational morphism of X to
quadric

{(20::2z1) €P*| ap(20, 21) + a1(2a, 23) + 25 = 0}

in [3, Table 3, n° 10] is given by (x0Zp : 120 : Yo 21 :
y1Z1 ¢ Z3). To be precise, the morphism on X ; is
given by

(ﬂxiZo : EaciZO : y—oijl : y—lijl : Z2> .

Z; Z; Yj Yj

It is easy to see that this is actually a morphism and
that X is the blow-up of the quadric as described in
Table 3, n° 10.

5. Further discussions.
classification theory of Fano threefolds, the method
of our paper can be applied only to a very special
class of Fano manifolds. However our method is

Contrary to the

straightforward and rather precise in the area it cov-
ers. For instance, combined with the classification
of Fano threefolds, it can cover certain ‘wild’ Fano
fivefolds.

Let f: X — S be a wild hypersurface bundle of
degree p such that X is a Fano manifold, dim X =
5 and dim$S = 3. Then p = 2,3 and S is a Fano
threefold by Corollary 4. If we assume further that
p = 2, then there is an ample divisor H on S such
that —Kg ~ 2H by Proposition 3.

By Proposition 5 and further arguments, we can
prove that S = P3 or P! x P! x P! in the case
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p = 2. In other words, we get only those offered by
Theorem 7. This will be published elsewhere.
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