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Fano threefolds with wild conic bundle structures

By Shigefumi Mori m. j. a.∗) and Natsuo Saito∗∗)

(Contributed by Shigefumi Mori, m. j. a., June 10, 2003)

Abstract: We classify smooth Fano threefolds with wild conic bundle structures in char-
acteristic 2 without using the general classification methods of Fano threefolds. General results on
wild hypersurface bundles of degree p are also obtained.
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1. Introduction. In characteristic 0, smooth
Fano threefolds with Picard number ρ = 1 were clas-
sified by V. A. Iskovskikh and V. V. Shokurov. The
case ρ > 1 was classified by S. Mori and S. Mukai us-
ing the classification of ρ = 1 case and the extremal
rays.

J. Kollár [1] extended the theory of extremal
rays [2] to arbitrary positive characteristic. Based
on it, N. I. Shepherd-Barron [7] extended the clas-
sification of smooth Fano threefolds with ρ = 1 to
positive characteristic along K. Takeuchi’s numeri-
cal approach [8].

Once the extremal rays and the classification of
ρ = 1 case are available, many of the arguments of
Mori and Mukai [3–5] for ρ > 1 work in positive
characteristic because they are basically numerical
computations. N. Saito gave a proof of the case ρ =
2 in positive characteristic, which was different from
the one in [4]. The Mori-Mukai numerical arguments
might not work in characteristic 2 for wild conic bun-
dles if the degree of the discriminant locus is involved
since the discriminant locus does not make sense and
its ‘virtual’ degree might be negative.

In this paper, we give a simple treatment of such
wild conic bundles in a more general setting. We
classify smooth Fano threefolds with wild conic bun-
dle structures (Corollary 8) without using general
classification theory of Fano threefolds mentioned
above. Combined with our result, we think the ar-
guments of [3–5] work in characteristic 2 as well.
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2. Wild hypersurface bundles of degree
p. We work over an algebraically closed field k of
characteristic p > 0. Let X, S be smooth irreducible
varieties over k with dimS = d, dimX = d + r and
f : X → S a projective flat morphism with M a rel-
atively very ample divisor such that X is embedded
in π : PS(E) → S, where E = f∗M . Let ξ be the
tautological line bundle of PS(E).

We say that f is a wild hypersurface bundle of
degree p if every geometric fiber f−1(s) is defined in
P(Es) by xp = 0 for some non-zero x ∈ Es.

In this case, there exists a Cartier divisor L on
S such that X ∼ pξ + π∗L, or X is defined by ϕ ∈
H0(S, Ep ⊗ L) ⊂ H0(S, Sp(E) ⊗ L) such that OSϕ

is a subbundle of Ep ⊗L. In the above, Sp(E) is the
p-th symmetric product of E and Ep ⊂ Sp(E) the
p-th power of E, or equivalently Ep = F ∗E, where
F : S → S is the p-th power endomorphism of S.

Theorem 1. Let f : X → S be a wild hy-
persurface bundle of degree p with embedding X ⊂
PS(E) as above. Then ϕ induces a surjective OS-
homomorphism

α : TS � Ep ⊗OS L/OSϕ,

where TS denotes the tangent bundle of S.
In particular, d ≥ r + 1 and if d = r +1 then α

is an isomorphism.
Proof. Let U be an arbitrary affine open set

of S, and D ∈ TS(U) an arbitrary k-derivation of
OS(U). Since D(xp) = 0 for every x ∈ E(U), D

induces a derivation D1 : Ep → Ep on U . D also
induces a derivation D2 : L → KS into the constant
sheaf KS of function field of S. As a tensor product,
D induces D3 : Ep ⊗OS L → Ep ⊗OS KS by D3(a ⊗
b) = D1(a) ⊗ b + a ⊗ D2(b) on U because D3(ar ⊗
b) = D3(a ⊗ rb) for r ∈ OS .

We thus have an element D3(ϕ)+ KSϕ ∈ (Ep ⊗
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KS/KSϕ)(U) and hence an OS-homomorphism β :
TS → Ep ⊗ KS/KSϕ.

Since OSϕ is a subbundle of Ep ⊗L, we have an
injection of OS-modules

Ep ⊗ L/OSϕ ↪→ Ep ⊗ KS/KSϕ

and see that the image of β is contained in Ep ⊗
L/OSϕ because β(D) = D3(ϕ) + KSϕ. Hence we
have α as required. We note that if ϕ =

∑
i aix

p
i ⊗ �

then α(D) =
∑

i D(ai)x
p
i ⊗ � mod OSϕ.

It remains to show that α is surjective. Let s ∈
S be a closed point, ∂1, . . . , ∂d a basis of the stalk
TS,s at s and � a generator of L ⊗ OS,s. We can
write ϕ = ϕ′ ⊗ � with ϕ′ ∈ Ep ⊗OS,s. The Jacobian
criterion says that the simultaneous solutions of ϕ′ =
∂1ϕ

′ = · · · = ∂dϕ
′ = 0 form the singular locus of

X over a neighborhood of s. Since X is assumed
nonsingular, there exist no solutions. This means
that ϕ′ ⊗ �, ∂1ϕ

′ ⊗ �, . . . , ∂dϕ
′ ⊗ � form a basis of

Ep ⊗ L, which proves that α is surjective at s. The
rest is obvious.

Remark 2. For a proper morphism f : X →
S to be a wild hypersurface bundle of degree p, the
existence of M (or the embedding X ⊂ PS(E)) is a
non-trivial condition. However if p = r + 1 then M

always exists because M ∼f −KX . In case p = 2
and r = 1, a wild hypersurface bundle f of degree 2
is also called a wild conic bundle.

3. Characterization of the base. We
maintain the same notation and assumptions as in
Theorem 1.

Proposition 3. Assume that d = r+1. Then
we have

−KS ∼ pc1(E) + (r + 2)L,

−KX ∼ (r + 2 − p)ξ + f∗((p − 1)c1(E) + (r + 1)L),

f∗((−KX/S)r+1) ≡ −(p − 1)(r + 2 − p)r(−KS),

f∗((−KX )r+1) ≡ (pr + 1)(r + 2 − p)r(−KS),

where ≡ means the numerical equivalence and
(−KX/S)r+1, (−KX)r+1 denote powers as cycles.

Proof. We see −KS ∼ pc1(E) + (r + 2)L by
Theorem 1. One can reduce the rest to this equiva-
lence relation through simple computations using the
equivalence relations −KP(E)/S ∼ (r+2)ξ−π∗c1(E),
X ∼ pξ + f∗L.

Comparing the formula in Proposition 3 with
the usual conic bundle case ∆f ≡ −f∗K2

X/S ≡
−f∗K2

X − 4KS (∆f is the discriminant locus) [4,
Proposition 6.2], we see that the wild conic bundle

case is easier than the conic bundle case, and we can
virtually set ∆f = −KS for the compatibility of for-
mulas and treatments.

The following is much easier than the usual conic
bundle case of Fano threefolds.

Corollary 4. Assume that d = r + 1 > 1 and
X is a Fano manifold. Then r + 2 > p and −KS is
ample.

Proof. Since KX |fiber of f � O(p − r − 2), we
have r +2 > p. Since −KX is ample, −KS is numer-
ically positive by Proposition 3. Again by ampleness
of −KX , the cone of curves NE(X) is spanned by a
finite number of irreducible curves [2], and so is its
image NE(S). Thus NE(S) is closed and −KS is
ample by Kleiman’s criterion.

4. Classification of X. Maintaining the
notation of Section 2, we will classify wild hyper-
surface bundles of degree p in a few settings. Our
approach is to study the exact sequence:

(∗) 0 → OS → Ep ⊗ L → TS → 0.

Proposition 5. Let f : X → S be a wild hy-
persurface bundle of degree p such that d = r + 1.
Assume that S contains a rational curve with nor-
malization C � P1 and that the restriction TX ⊗OC

of TS to C has a splitting of the form

TS⊗OC � O(−1)⊕a−1⊕O⊕a0⊕O(1)⊕a1⊕O(2)⊕a2

(a0, . . . , a2 ≥ 0).
Then we have the following.

1. Case (∗) ⊗ OC is non-split : a0 = 0, a2 = 1,

Ep ⊗ L ⊗ OC � O(−1)⊕a−1 ⊕ O(1)⊕(a1+2). If
a−1 > 0, then p = 2 and there is a section s :
C → X over C such that (KX · s(C)) ≤ 0,

2. Case (∗)⊗OC is split : p = 2, a−1 = a1 = 0 and
E2 ⊗ L ⊗OC � O⊕(a0+1) ⊕O(2)⊕a2 .
Proof. We note first that a2 > 0 by TC �

OC(2) ⊂ TS ⊗OC .
We treat the case (∗) ⊗OC is non-split. Then

Ep ⊗ L ⊗OC � O(−1)⊕a−1 ⊕O⊕a0

⊕O(1)⊕(a1+2) ⊕O(2)⊕(a2−1).

Since E ⊗OC is a direct sum of line bundles, we see
deg L ≡ 1 (mod p). Hence none of O(2),O can be
a component of Ep ⊗ L ⊗ OC and a0 = 0 and a2 =
1. Assume that a−1 > 0. Then p = 2 by −1 ≡ 1
(mod p). Let deg L ⊗OC = 1 + 2x for some integer
x. Then
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E ⊗OC � O(−1 − x)⊕a−1 ⊕O(−x)⊕(a1+2).

Let s : C → PS(E) be the section of π over C such
that s∗ξ corresponds to the projection of E ⊗OC to
O(−1 − x). Then (s(C) · ξ) = −1 − x and (s(C) ·
c1(E)) = −(1+x)a−1−x(a1 +2). Thus (s(C) ·X) =
(s(C) ·2ξ+π∗L) = −1 < 0. Hence s(C) ⊂ X and we
see that (s(C) ·−KX) = 1−a−1 ≤ 0 by r = a−1 +a1

and Proposition 3.
It remains to treat the case (∗) ⊗ OC is split.

Then

Ep ⊗ L ⊗OC � O(−1)⊕a−1 ⊕O⊕(a0+1)

⊕O(1)⊕a1 ⊕O(2)⊕a2 .

We have similarly a−1 = a1 = 0 and p = 2 by 2 ≡ 0
(mod p).

The following was proved in [7, Proposition
10.1]. We give a different proof.

Corollary 6. Let X be a Fano threefold in
characteristic 2 with a wild conic bundle structure
f : X → S. Then S is isomorphic to P2 or P1×P1.

Proof. By Corollary 4, S is a del Pezzo surface.
Hence it is enough to derive a contradiction assuming
that there is a (−1)-curve C on S.

Since TS ⊗OC � O(−1)⊕O(2), we have a con-
tradiction by Proposition 5.

We can classify wild hypersurface bundle of de-
gree p over simple bases.

Theorem 7. Let f : X → S be a wild hyper-
surface bundle of degree p such that d = r + 1 > 1
and keep the notation of Section 2. If S is a product
of projective spaces, we have only two cases.

1. Case S � Pd : E � O⊕(d+1)
S and L � OS(1)

modulo tensoring E with a line bundle on S, and
X is a smooth divisor of Pd × Pd of bidegree
(1, p).

2. Case S � (P1)d : p = 2, E � OS ⊕(⊕d
i=1 p∗iO(1)

)
and L � OS modulo tensoring

E with a line bundle on S, where pi : S → P1

is the i-th projection. X is a divisor of PS(E)
such that X ∼ 2ξ.
Proof. First, we consider the case S � Pd. Let

C ⊂ S be a line. Then TS ⊗ OC � O(1)⊕(d−1) ⊕
O(2). Then (∗) ⊗ OC is non-split by Proposition 5.
Hence (∗) is non-split and (∗) is the standard ex-
act sequence for TS and Ep ⊗ L � OS(1)⊕(d+1)

since H1(S, (TS)∗) � k. Thus Ep � O⊕(d+1)
S and

L � OS(1) (modulo tensoring E with a line bun-
dle). It remains to show that E � O⊕(d+1)

S . This

follows once we show that E is a direct sum of
line bundles. Since OS is a direct summand of
F∗OS � ⊕0≤i,j<pOS(−i−j), E is a direct summand
of F∗(F ∗E) � E ⊗ F∗OS . Since F ∗E � F ∗(direct
sum of line bundles), F∗F ∗E is also a direct sum of
line bundles. Hence E is a direct sum of line bundles
and we are done in this case.

Next, we assume S � Pn×T with n, dimT > 0,
and let C be (a line) × (a point). Then TS ⊗OC �
O⊕dim T ⊕ O(1)⊕(n−1) ⊕ O(2). Hence (∗) ⊗ OC is
split, p = 2 and n = 1 by Proposition 5. Hence S is
the product of P1.

We note TS � ⊕d
i=1 p∗iO(2) and H1(S, (TS)∗) �

⊕dp∗i H
1(P1,O(−2)). Hence the splitting of the re-

strictions of (∗) above implies the splitting of (∗).
Hence E2 ⊗L � O⊕ (⊕d

i=1 p∗iO(2)
)
, and E2 � O⊕(⊕d

i=1 p∗iO(2)
)

and L � OS . The rest is similar to
the case S � Pd.

Corollary 8. Let X be a Fano threefold in
characteristic 2 with a wild conic bundle structure
f : X → S. Then we have one of the following.

1. Case S � P2 : X is a divisor of P2 × P2 of
bidegree (1, 2).

2. Case S � P1 × P1 : X is a divisor of P =
PS(O(1, 0) ⊕O(0, 1)⊕O) such that X ∼ 2ξ.
This follows from Theorem 7 except that we

need to show that X given in case (2) is Fano. This
is however obvious from −KX ∼ ξ + f∗O(1, 1).

Remark 9. The case (1) was proved and the
case (2) was mentioned as an example in [6]. The
case (1) should ‘belong’ to [3, Table 2, no 24], and the
case (2) to Table 3, no 10, which are in characteristic
0. In the case (2), the equivalence of our description
and those in [3, 6] requires some explanation.

Remark 10. Let S, P , X be as in Corollary 8,
Case (2). These can be described as follows: Let
x0, x1 (resp. y0, y1) be variables of bidegree (1, 0)
(resp. (0, 1)). Let Z0, Z1, Z2 be variables of bidegree
(−1, 0), (0,−1), (0, 0). Let a0(x0, x1), a1(y0, y1) be
homogeneous polynomials of degree 2 without mul-
tiple factors. Then X is defined by

a0(x)Z2
0 + a1(y)Z2

1 + Z2
2 = 0.

For each i, j = 0, 1, we consider the open set Ui,j ⊂
S = P1 ×P1 defined by xiyj �= 0, and Xi,j over Ui,j

is given by coordinates (x1−i/xi, y1−j/yj) × (xiZ0 :
yjZ1 : Z2) with one equation

a0

(
x

xi

)
(xiZ0)

2 + a1

(
y

yj

)
(yjZ1)

2 + Z2
2 = 0.
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Furthermore, the birational morphism of X to
quadric

{(z0 : · · · : z4)∈P4 | a0(z0, z1) + a1(z2, z3) + z2
4 = 0}

in [3, Table 3, no 10] is given by (x0Z0 : x1Z0 : y0Z1 :
y1Z1 : Z2). To be precise, the morphism on Xi,j is
given by(

x0

xi
xiZ0 :

x1

xi
xiZ0 :

y0

yj
yjZ1 :

y1

yj
yjZ1 : Z2

)
.

It is easy to see that this is actually a morphism and
that X is the blow-up of the quadric as described in
Table 3, no 10.

5. Further discussions. Contrary to the
classification theory of Fano threefolds, the method
of our paper can be applied only to a very special
class of Fano manifolds. However our method is
straightforward and rather precise in the area it cov-
ers. For instance, combined with the classification
of Fano threefolds, it can cover certain ‘wild’ Fano
fivefolds.

Let f : X → S be a wild hypersurface bundle of
degree p such that X is a Fano manifold, dimX =
5 and dim S = 3. Then p = 2, 3 and S is a Fano
threefold by Corollary 4. If we assume further that
p = 2, then there is an ample divisor H on S such
that −KS ∼ 2H by Proposition 3.

By Proposition 5 and further arguments, we can
prove that S = P3 or P1 × P1 × P1 in the case

p = 2. In other words, we get only those offered by
Theorem 7. This will be published elsewhere.
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