Topological Euler numbers in a semi-stable degeneration of surfaces

By Yongnam Lee
Department of Mathematics, Sogang University, Sinsu-dong, Mapo-gu, Seoul 121-742, Korea
(Communicated by Shigefumi Mori, M. J. A., Feb. 12, 2003)

Abstract

The object of this paper is to study topological Euler numbers in a semi-stable degeneration of surfaces by using the semi-stable minimal model program. As its application, we find some restrictions of singularities in a semi-stable degeneration of surfaces with general fiber a minimal $\kappa=0$ surface.

Key words: Algebraic surface; semi-stable degeneration; topological Euler number.

Introduction. Let $\mathcal{X} \rightarrow \Delta$ be a one parameter flat family of projective surfaces over a small disk in C. We assume that a general fiber X_{t} for $t \in \Delta-$ $\{0\}$ has nef canonical bundle. Then via \log resolution, base change, normalization and special resolution of toric singularities one can obtain a new family $\mathcal{X} \rightarrow \Delta$ with smooth \mathcal{X} and simple normal crossing X_{0}, called a semi-stable reduction [3]. Given a semistable reduction family of projective surfaces over Δ whose canonical bundle of a general fiber is nef, the following holds by semi-stable minimal model program of threefolds (cf. [5]).

Theorem A. Semi-stable minimal model program (it may need base change) leads a degeneration $\pi: \mathcal{X} \rightarrow \Delta$ with the following properties:

1. \mathcal{X} has \mathbf{Q}-factorial terminal singularities,
2. X_{0} is a reduced Cartier divisor and is numerically zero relative to π,
3. $\pi: \mathcal{X} \rightarrow \Delta$ is $\operatorname{dlt}\left(\left(\mathcal{X}, \pi^{-1}(t)\right)\right.$ is dlt for all $t \in \Delta)$,

4. $K_{\mathcal{X} / \Delta}$ is π-nef.

Let $\pi: \mathcal{X} \rightarrow \Delta$ be a semi-stable degeneration (in the sense of the minimal model program) of surfaces whose canonical bundle is relatively nef. Let $\left(V, D_{V}\right)$ be a pair of a component and its double curve in the central fiber. Then $\left(V, D_{V}\right)$ is a dlt pair with D_{V} a reduced Weil divisor (cf. [5]). The second Chern class of a dlt pair can be defined as an orbifold Euler number (cf. [12, 19]). Define $\operatorname{Sing}\left(V, D_{V}\right)$ to be the set of singular points of V outside D_{V}. Then

$$
\begin{aligned}
c_{2}\left(V, D_{V}\right)= & e_{\mathrm{top}}(V)-e_{\mathrm{top}}\left(D_{V}\right) \\
& -\sum_{p \in \operatorname{Sing}\left(V, D_{V}\right)}(1-1 / r(p))
\end{aligned}
$$

[^0]where $r(p)$ is the local orbifold fundamental group. Bogomolov-Miyaoka-Yau inequality can be generalized to a dlt pair (cf. [11, 12, 19]), and therefore the following holds.

Theorem B. Let $\mathcal{X} \rightarrow \Delta$ be a semi-stable degeneration (in the sense of the minimal model program) of surfaces whose canonical bundle is relatively nef. Let $\left(V, D_{V}\right)$ be a pair of a component and its double curve in the central fiber. Then the following holds:

1. $c_{2}\left(V, D_{V}\right) \geq 1 / 3\left(K_{V}+D_{V}\right)^{2}$,
2. $e_{\mathrm{top}}(V)-e_{\mathrm{top}}\left(D_{V}\right) \geq 0$, and it is strictly positive if it has a singular point outside double curves.

In the paper, our concern is to study the relation between $\sum_{V} e_{\text {top }}(V)-e_{\text {top }}\left(D_{V}\right)$ and $c_{2}\left(X_{t}\right)$ in a semi-stable degeneration of surfaces. Precisely, we prove the following by using the semi-stable minimal model program:

Theorem. Let $\pi: \mathcal{X} \rightarrow \Delta$ be a semi-stable degeneration (in the sense of the minimal model program) of surfaces whose canonical bundle is relatively nef. Let $\left(V, D_{V}\right)$ be a pair of a component and its double curve in the central fiber.

Then $c_{2}\left(X_{t}\right) \geq \sum_{V} e_{\text {top }}(V)-e_{\text {top }}\left(D_{V}\right)$.
For a semi-stable reduction family of surfaces $\mathcal{X} \rightarrow \Delta$, we have the equality

$$
c_{2}\left(X_{t}\right)=\sum_{V} e_{\text {top }}(V)-e_{\text {top }}\left(D_{V}\right)
$$

by topological argument [15]. Theorem can be applied to the bounds of the number of components and to the restriction of singularities on the central fiber of semi-stable degeneration of surfaces. It is proved in [9] under the suitable condition (semi-stable degeneration with permissible singularities), and it can be generalized to stable \log surfaces [10].

1. Preliminaries. The notion of discrepancy is the fundamental measure of the singularities of (X, D) (cf. [4] or [5]).

Definition. Let X be a normal variety and $D=\sum d_{i} D_{i}$ an effective \mathbf{Q}-divisor such that $K_{X}+D$ is \mathbf{Q}-Cartier. Let $f: Y \rightarrow X$ be a proper birational morphism from a normal variety Y. Then we can write

$$
K_{Y}+f_{*}^{-1}(D) \equiv f^{*}\left(K_{X}+D\right)+\sum a(E, D) E
$$

where $f_{*}^{-1}(D)$ is the proper transform of D, the sum runs over distinct prime divisors $E \subset Y$, and $a(E, D) \in \mathbf{Q}$. This $a(E, D)$ is called the discrepancy of E with respect to (X, D); it only depends on the divisor E, and not on the partial resolution Y.

We define discrep (X, D)
$=\inf _{E}\left\{a(E, D) \mid E\right.$ is exceptional, Center ${ }_{X}(E) \neq$ $\emptyset\}$. And we say that (X, D), or $K_{X}+D$ is

$$
\left.\begin{array}{l}
\text { terminal } \\
\text { canonical } \\
\text { purely log terminal } \\
\text { log canonical }
\end{array}\right\} \text { if } \operatorname{discrep}(X, D)\left\{\begin{array}{l}
>0 \\
\geq 0 \\
>-1 \\
\geq-1
\end{array}\right.
$$

Moreover, (X, D) is Kawamata log terminal (klt) if (X, D) is purely \log terminal and $d_{i}<1$ for every i; and (X, D) is divisorial log terminal (dlt) if there exists a log resolution such that the exceptional locus consists of divisors with all $a(E, D)>-1$.

We work throughout over the complex number field C. The notation here follows Hartshorne's Algebraic Geometry.

2. Proof of Theorem.

Theorem. Let $\pi: \mathcal{X} \rightarrow \Delta$ be a semi-stable degeneration (in the sense of the minimal model program) of surfaces whose canonical bundle is relatively nef. Let $\left(V, D_{V}\right)$ be a pair of a component and its double curve in the central fiber. Then $c_{2}\left(X_{t}\right) \geq$ $\sum_{V} e_{\text {top }}(V)-e_{\text {top }}\left(D_{V}\right)$.

Proof. We change a semi-stable degeneration $\mathcal{X} \rightarrow \Delta$ to another semi-stable degeneration $\mathcal{Y} \rightarrow$ Δ^{\prime} (relatively minimal permissible model, cf. [2, 9]) which admits a semi-stable model (in the sense of the semi-stable reduction theorem). Let the central fiber $Y_{0}=\sum\left(W, D_{W}\right)$ of \mathcal{Y}. By this process, we can compare the second Chern class of the central fiber with that of a general fiber, the proof is given in [9]:

$$
c_{2}\left(Y_{t}\right)=\sum_{W} e_{\mathrm{top}}(W)-e_{\mathrm{top}}\left(D_{W}\right)
$$

When we change $\mathcal{X} \rightarrow \Delta$ to $\mathcal{Y} \rightarrow \Delta^{\prime}$ there is no
change of type of a singularity on the double curves of the central fiber, i.e., $\sum_{V} e_{\text {top }}(V)-e_{\text {top }}\left(D_{V}\right)=$ $\sum_{W} e_{\text {top }}(W)-e_{\text {top }}\left(D_{W}\right)$ if there is no singular point outside double curves. The possible type of a singularity on the central fiber of \mathcal{X} outside double curves is a rational double point or a quotient singularity of the form $1 /\left(r^{2} s\right)(1, d s r-1)$ where d is prime to r (cf. [6]). The possible type of a singularity on the central fiber of \mathcal{Y} is a quotient singularity of the form $1 /\left(r^{2}\right)(1, d r-1)$ where d is prime to r (cf. [2]). For the Milnor fiber F of a \mathbf{Q}-Gorenstein smoothing of a singularity of the form $1 /\left(r^{2} s\right)(1, d s r-1)$ where d is prime to r, it holds $b_{2}(F)=s-1$ (cf. [2, 6]). Since the change of $\mathcal{X} \rightarrow \Delta$ to $\mathcal{Y} \rightarrow \Delta^{\prime}$ is obtained by some base change of Δ and simultaneous resolution of rational double points, the following inequality holds by decreasing the second Betti number of the central fiber via Milnor fiber:

$$
\begin{aligned}
c_{2}\left(X_{t}\right) & =c_{2}\left(Y_{t}\right) \\
& =\sum_{W} e_{\mathrm{top}}(W)-e_{\mathrm{top}}\left(D_{W}\right) \\
& \geq \sum_{V} e_{\mathrm{top}}(V)-e_{\mathrm{top}}\left(D_{V}\right)
\end{aligned}
$$

By Theorem B and Theorem, we have the following:

Corollary 1. Let $\pi: \mathcal{X} \rightarrow \Delta$ be a semi-stable degeneration (in the sense of the minimal model program) of surfaces whose canonical bundle is relatively nef. Let $\left(V, D_{V}\right)$ be a pair of a component and its double curve in the central fiber. Then the number of components on the central fiber, with $\left(K_{V}+D_{V}\right)^{2}>$ 0 or with singular points outside double curves, is bounded by $c_{2}\left(X_{t}\right)$.
3. Application to a semi-stable degeneration of surfaces with $\kappa=0$. Let $\pi: \mathcal{X} \rightarrow \Delta$ be a semi-stable degeneration (in the sense of the minimal model program) of surfaces with general fiber a minimal $\kappa=0$ surface. Assume that $m K_{X_{t}} \sim 0$ for $t \in \Delta-\{0\}$. Then $m K_{X_{0}} \sim 0$ by semi-stable minimal model program (cf. [5]). Before the minimal model program, the similar results were obtained by Kulikov, Morrison, Persson, Pinkham and others via elementary modifications $[7,8,13,16]$.

Therefore the index of \mathcal{X} is bounded by the number m which is the smallest number such that $m K_{X_{t}} \sim 0$ for $t \in \Delta-\{0\}$. So on a semi-stable degeneration of K3 surfaces or abelian surfaces, $K_{\mathcal{X} / \Delta}$
is Cartier divisor. And on a semi-stable degeneration of Enriques surfaces, the example with the singular points of the index 2 outside double curves was given by Persson [15]. The examples with the singular points of the index 2 on the double curves can be constructed easily by using the involution action on the special degenerations of K3 surfaces (cf. $[13,17])$. Also on semi-stable degenerations of hyperelliptic surfaces, the examples with the singular points of the index $2,3,4,6$ on the double curves can be constructed easily by using the action on the special degenerations of abelian surfaces (cf. [18]).

Let $\mathcal{X} \rightarrow \Delta$ be a semi-stable degeneration of hyperelliptic surfaces. Then the central fiber X_{0} has no singular point outside double curves by Theorem B, and Theorem. So our concern is to study a semistable degeneration of Enrique surfaces.

Corollary 2. Let $\mathcal{X} \rightarrow \Delta$ be a semi-stable degeneration (in the sense of the minimal model program) of surfaces. Assume that a general fiber is a minimal Enriques surface. Then the number of singular points outside double curves on the central fiber X_{0} is bounded by 16. If X_{0} is normal then this number is bounded by 10 .

Proof. Let $\left(V, D_{V}\right)$ be a pair of a component and its double curve in the central fiber and let $\operatorname{Sing}\left(V, D_{V}\right)$ be the set of singular points of V outside D_{V}. Then $\left(V, D_{V}\right)$ is a dlt pair with D_{V} a reduced Weil divisor (cf. [5]). The second Chern class of a dlt pair can be defined as an orbifold Euler number (cf. $[12,19])$. Let $r(p)$ be the local orbifold fundamental group of a singular point $p \in \operatorname{Sing}\left(V, D_{V}\right)$.

The first statement holds directly by Theorem B and Theorem:

$$
\begin{aligned}
12 & =c_{2}\left(X_{t}\right) \\
& \geq \sum_{V} e_{\mathrm{top}}(V)-e_{\mathrm{top}}\left(D_{V}\right) \\
& \geq \sum_{V} \sum_{p \in S_{V}}(1-1 / r(p))+\sum_{V} \sharp R_{V}
\end{aligned}
$$

where the set of singular points

$$
R_{V}=\left\{\text { rational double points in } \operatorname{Sing}\left(V, D_{V}\right)\right\}
$$

and the set of singular points $S_{V}=\operatorname{Sing}\left(V, D_{V}\right)-$ R_{V}. Note that $r(p) \geq 4$ if $p \in S_{V}$.

Assume that X_{0} is normal. We consider the global index one cover \mathcal{Z} of \mathcal{X} (cf. [5]). Then $\mathcal{Z} \rightarrow \Delta$ gives a semi-stable degeneration of K3 surfaces (in the sense of the minimal model program) and the
central fiber Z_{0} of \mathcal{Z} is normal with at most rational double points. For the Milnor fiber F of a rational double point or a quotient singularity of the form $1 /\left(r^{2} s\right)(1, d s r-1)$ for $s>1$ where d is prime to r, it holds $b_{2}(F) \geq 1$ (cf. $[2,6]$). Note that $b_{2}\left(X_{t}\right)=10$.

If there is a rational double point or a quotient singularity of the form $1 /\left(r^{2} s\right)(1, d s r-1)$ for $s>1$ where d is prime to r, each point decreases topological Euler number by more than or equal to 1 . Therefore we may assume that singularities are of the form $1 /\left(r^{2}\right)(1, d r-1)$ where d is prime to r. Since the index of singularity is only 2 , the form of a singularity is $1 / 4(1,1)$. And the corresponding singular point on Z_{0} is an ordinary double point.

The involution σ induces a quotient $Z_{0} \rightarrow X_{0}$. Let Z be the minimal resolution of Z_{0}. Consider the topological Lefschetz formula and the holomorphic Lefschetz formula [1]:

$$
\begin{gathered}
e_{\text {top }}\left(Z^{\sigma}\right)=\sum(-1)^{i} \operatorname{Tr}\left(\sigma^{*}: H^{i}(Z, \mathbf{Z})\right) \\
\sum(-1)^{i} \operatorname{Tr}\left(\sigma^{*}: H^{i}\left(Z, \mathcal{O}_{Z}\right)\right)=0
\end{gathered}
$$

Therefore σ^{*} acts on $H^{2}\left(Z, \mathcal{O}_{Z}\right)$ as -1 by the holomorphic Lefshetz formula, and it holds that 2 (the number of (-2) curves $)=e_{\text {top }}\left(Z^{\sigma}\right) \leq 20$.

Oguiso and Zhang [14] constructed an Enriques surface with a singularity of the form $1 /\left(2^{2} 10\right)(1,19)$. This example is the extremal case of a singularity of the form $1 /\left(r^{2} s\right)(1, s d r-1)$ where d is prime to r. The index one cover of this singularity is the form $x y=z^{20}$ (A_{19}-singularity). By some base change of Δ it can be changed to 10 ordinary double points, therefore it produces 10 singularities of the form $1 / 4(1,1)$ in an Enriques surface.

Acknowledgement. The work was supported by Korea Research Foundation Grant (KRF-2002-070-C00003).

References

[1] Atiyah, M., and Singer, I.: The index of elliptic operators: III. Ann. of Math. (2), 87, 546-604 (1968).
[2] Kawamata, Y.: Moderate degenerations of algebraic surfaces. Complex Algebraic Varieties Bayreuth 1990. Lecture Notes in Math. vol. 1507, Springer-Verlag, Berlin-Heidelberg-New York, pp. 113-132 (1992).
[3] Kempf, G., Knudsen, F., Mumford, D., and Saint-Donat, B.: Toroidal Embeddings. Lecture Notes in Math. vol. 339, Springer-Verlag, Berlin-Heidelberg-New York (1973).
[4] Kollár, J. et al.: Flips and abundance for algebraic threefolds. Astérisque, 211, pp. 1-272 (1992).
[5] Kollár, J., and Mori, S.: Birational geometry of algebraic varieties. Cambridge Tracts in Math., 134, (1998).
[6] Kollár, J., and Shepherd-Barron, N.I.: Threefolds and deformations of surface singularities. Invent. Math., 91, 299-338 (1988).
[7] Kulikov, V.: Degenerations of K3 surfaces and Enriques surfaces. Math. USSR Izvestija, 11, 957989 (1977).
[8] Kulikov, V.: On modifications of degenerations of surfaces with $\kappa=0$. Math. USSR Izvestija, 17, 339-342 (1981).
[9] Lee, Y.: Numerical bounds for degenerations of surfaces of general type. Internat. J. Math., 10, 79-92 (1999).
[10] Lee, Y.: Bounds and Q-Gorenstein smoothings of smoothable stable log surfaces. Symposium in honor of C. H. Clemens. Contemp. Math., 312, 153-162 (2002).
[11] Megyesi, G.: Generalisation of the Bogomolov-Miyaoka-Yau inequality to singular surfaces. Proc. London Math. Soc., 78 (3), 241-282 (1999).
[12] Miyaoka, Y.: The maximal number of quotient singularities on surfaces with given numerical invariants. Math. Ann., 268, 159-171 (1984).
[13] Morrison, D.: Semistable degenerations of Enriques and hyperelliptic surfaces. Duke Math. J., 48, 197-249 (1981).
[14] Oguiso, K., and Zhang, D.: On the most algebraic K3 surfaces and the most extremal log Enriques surfaces. Amer. J., 118, 1277-1297 (1996).
[15] Persson, U.: Degenerations of algebraic surfaces. Mem. Amer. Math. Soc., 11 (189), pp. 1-144 (1977).
[16] Persson, U., and Pinkham, H.: Degeneration of surfaces with trivial canonical bundle. Ann. of Math. (2), 113, 45-66 (1981).
[17] Shah, J.: Projective degenerations of Enriques' surfaces. Math. Ann., 256, 475-495 (1981).
[18] Tsuchihashi, H.: Compactifications of the moduli spaces of hyperelliptic surfaces. Tôhoku Math. J., 31, 319-347 (1979).
[19] Wahl, J.: Miyaoka-Yau inequality for normal surfaces and local analogues. Contemp. Math., 162, 381-402 (1994).

[^0]: 2000 Mathematics Subject Classification. 14D06, 14J28.

