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An example of nonuniqueness of the Cauchy problem for

the Hermite heat equation

By Bishnu P. DHUNGANA™®)" **)

(Communicated by Shigefumi MORI, M. J. A., March 14, 2005)

Abstract:

Using Mehler kernel, we give an example of nontrivial solution of the homoge-

neous Cauchy problem of the Hermite heat equation, which is, for each ¢, bounded in the space

variables.
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1. Introduction. For k =0,1,2,..., we de-
note by hx the normalized Hermite functions on R
defined by

hi(z) = (2%k!IV/7) " hy(2)
where hy, is the Hermite function on R defined by

k
e db
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For all z,£ € R and w € C with |w| < 1, the well
known Mehler formula (p. 107, [6]) is

hi(z) = (=1)Fe

o ()i (§) .

k=0

(1= w?)F T R
where the series is uniformly and absolutely conver-
gent on {w € C : |w| < 1}. In view of (1.1), it is
easy to see that

Z e—(2k+1)thk (l’)hk(f)
k=0

—t 1 1qpe—4t 2
— e -3 1,:—4t (z—&)*—

V(1 — e—1t)2
for ,£ € R and t > 0. We denote by E(z,§,t) the
Mehler kernel and define by

(1.2)
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Eo. 6.1 > e CR D ()i (€), t >0
€,Q, = k=0

0, t<0.
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For fixed € € R, we easily see that F(z, &, t) satisfies
the Hermite heat equation

o ”®
5 o tr ) U) =0, reR, 0<t<o0.

Moreover for each z € R and each t > 0, E(z,(,t)
is an entire function of ¢ € C.

As a particular case of the second order
parabolic equation, the following is the famous
uniqueness theorem on the Cauchy problem of the
Hermite heat equation:

Theorem 1.1 (p.86, [1]). Let T > 0 and
U(z,t) be a continuous function in R x [0,T] such
that

(a) (& — 25 +2)U(z,t) =0 in R x (0,T),

(b) for some constants C, A > 0,

U(z,t)] < C A in R x (0,7),

(¢) U(z,0) =0 for x € R.
Then U(z,t) =0 in R x [0,T].

The aim of this paper is to give an example of
nonuniqueness for the Cauchy problem of the Her-

mite heat equation, which is, for each ¢, uniformly
bounded in the z variable.

2. Main results.

Lemma 2.1. Let E(x,&,t) be the Mehler ker-
nel as defined in (1.2) and let 0 < € < 1. For each
M>0,let L ={{+in: &> M —¢, |n| <e}. Then,
fort >0, there exist some constants Cy,Co > 0 such
that

e C
sup |E(z, ¢, )] < Cyexp (; e

CeL.

d(:c,LE)2> :
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Proof. For ¢ = £ +in and t > 0, we have
|E(z, ¢, t)]
- 6_{é F;“ (=) +i+§f2t Ig}"‘é%l_n

T e M)

Since \/%—iu < # for every t > 0, we have

at
11+te l—e 11+te 2
{2 T e—lt (z—8)* +1+e—2t $5}+2 1_e—at !l

E.’L’, 1) <
B, v
Put P = %}fﬁzj— and Q = == ~ for positive .

Then P > 0 and @ > 0. Using the inequality
Plo- g2 +Qus> (P-2) -2
we obtain that

|E(x,¢t)] <

2t
e? 1+272t 772——,45{77 +(z— 5) }

1
2/t
Since d (, Lc)* < 12 + (x — £)? for every ¢ € L, we
have

(2.1)

1 lte 62— d(xL)
sup |FE(x,(,t 6216*2’5 et
Cepel (2,6, t)] < Wi =

For 0 < t < 1, it is not difficult to see that

1+4e 2t 1 e~2t C
— = < — >4
21 —e=2) — ¢t 1—e 4 t
for some constant C7 > 0. It then follows from (2.1)
that for 0 <t <1

2
eT——d(;E L )

(22)  sup |[B(.¢.0) <

¢eLe

But for 0 < e < 1 and 0 < t < 1, there exists some
constant Cy > 0 such that

2 e, C
e TP d@ L) 5+ d@L)® £ .

(23) 5=

It then follows from (2.2) and (2.3) that for 0 < ¢ < 1
(2.4)

sup |E(x,(,t)] < Cyexp (E — ﬁ d(w,LE)2> )
CEL. t 2t

But from (2.1) we see that

(2.5) sup |E(x,(,t)] — 0 as t — oo.

¢eLe

Hence in view of (2.4) and (2.5), we obtain

e C
sup B, .0 < Coewp (§ = Shae, 1))
CEL.

fort >0and 0 < e < 1. ]
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Theorem 2.1. Let T > 0 be fized and € > 0
be arbitrary. Then there exists a continuous function
U(z,t) on R x [0,T] satisfying
(2.6)

0 _P L Ulz,t)=0 in Rx (0,T)
5% 922 z2 x,t) = m , 1),

for some constant C := C(e)

(2.7) |U(x,t)|§Cexp(§) in R x (0,T),

(2.8) U(z,0)=0 for z€R.

But U(z,t) is not identically zero in R x [0,T].
Proof. For each M > 0, consider a curve

™M =71 Ur2Us

in the complex plane C where ( = £ 4 in and
T
frng = — >
n={cecin=7, ¢=m},
—{cecie=m, =},

T
— = —— > .
n={ceCln=-3. ¢=M]|
Define a function U(z,t) on R x (0,T") by

L / (G esplel e

(2.9) s

U(z,t) =

where the integral is taken counterclockwise. Since

|exp(e€)| = exp(—¢* )
on the curve {&n = £7, it shows that the function

exp(ec ) decreases very rapidly as & — oo on the
curve {n = 5. So U(z,t) is well defined on R x
(0,T). Also the integral is independent of M > 0
and moreover it satisfies (2.6).

For 0 < ¢ < 1, let L. be as in Lemma 2.1.
Choose M > 0 sufficiently large so that vy C Le.
Since the integral

1 2
o [ Tes(e)l1ac
YM

is finite, we obtain

(2.10) |U(z,t)| < Cum CSUS |E(z, ¢, 1)
€L,

for some constant Cjpy > 0. By (2.10) and Lemma
2.1, we have

(2.11)

U0l < Com (§ = Saw L), 150
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for some constants C, C7 > 0. Moreover the inequal-
ity (2.11) holds for any € > 0 and we easily obtain
(2.7) from (2.11).

Since the integral (2.9) is independent of M,
(2.11) means that for any R > 0,

(2.12) sup |U(z,t)| — 0 as t — 04
<R
which implies that U(z, t) is continuous on R x [0, T')
and U(z,0) =0 on R.

Now we show that U(z, t) is not identically zero.
Since

Ex(xa C? t)

—4t —2t
114e 2 l—e
et e 21— 3 (z—¢)*— 1Fe—20 x¢

B B -1
(1= e ) (- En (e - ) - 55¢)

we obtain that for suficiently large M > 0,

U (0 1y 1) LI
s\"T1%%3 V2r 2mi )y,

_ 3% / e_CQEC dC
V8T 2mi Jir,
31 L0

- VBrT(2)
where the last equality follows from the Hankel inte-
gral formula for T' functions (p. 245, [5]). This com-
pletes the proof. Ol

Remark 2.1. Rauch in his monograph [4]

proved that

u(z,t) :/ eg”(_z)l/ze_zaeztdz, a€ (1/2,1)
To

where T'y denote the contour Re(z) = a > 0 oriented
in the direction of the increasing imaginary part, is
a nontrivial solution of the heat equation vanishing
identically for t < 0. But for each t, it is not bounded
in the space variable. A better nontrivial solution of
the heat equation with null initial data was presented
in [3] via heat kernel. Quite naturally, our effort
to find an example of nonuniqueness of the Cauchy
problem for the Hermite heat equation was a chal-
lenging task. We fulfilled it with the use of Mehler
kernel. Though the example is based on the tech-
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niques involved in [3], the role of Mehler kernel that
gives a different mode to the example is considered
to be predominant. In particular, the solution con-
verges [see Section 2, (2.12)] to zero uniformly for z €
{lJr] < R: R > 0} as t — 0 which is an important
aspect of the example. Moreover, extending the defi-
nition of U(z,t) for t < 0 by U = 0 we have U(z,t) €
C* (R, x Ry) by virtue of (2.12) and hypoelliptic
property of the Hermite heat operator. That is to
say, U(z,t) is a nontrivial C*°-solution satisfying the
Hermite heat equation and vanishing identically for
t < 0. Furthermore possibly the first example of
nonuniqueness of the Cauchy problem for the Her-
mite heat equation, it might be useful for further
researches in partial differential equations. For ex-
ample, it remains to study about the optimal growth
condition with respect to ¢, for small ¢ > 0, for the
uniqueness of the solution to the Cauchy problem for
the Hermite heat equation (cf. [2]).
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