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Abstract:

Consider an o-minimal expansion of the real field. We deal with the real

spectrums of the ring C%;(M) of definable C” functions on an affine definable C™ manifold M

in the present paper.

Here r denotes a nonnegative integer.

We show that the natural map

Sper(C4:(M)) — Spec(C%:(M)) is a homeomorphism when the o-minimal structure is polynomi-
ally bounded. If the o-minimal structure is not polynomially bounded, it is not known whether the
natural map Sper(Cj;(M)) — Spec(Cj;(M)) is a homeomorphism or not. However, the natural
map Sper(CY%(M)) — Spec(CY;(M)) is bijective even in this case.
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1. Introduction. An o-minimal structure
was first introduced by L. van den Dries [vdD1]
and developed by A. Pillay, C. Steinhorn and so on
[KPS, PS]. See [vdD2] for the definition and the ge-
ometric theory of o-minimal structures. We fix an
o-minimal expansion of the real field in the present
paper. Let M be an affine definable C" manifold,
where r denotes a nonnegative integer. An affine
definable C™ manifold is a C" submanifold of a Eu-
clidean space R™ which is simultaneously a definable
subset of R™. The notation C%;(M) denotes the ring
of all definable C" functions on M in the present pa-
per. We want to study the ring C%;(M) from the real
algebraic point of view in the present paper. If the
reader is not familiar with the basic theory of real
algebra, see [ABR, BCR).

The real spectrum of excellent rings has strong
properties as introduced in [ABR, BCR]. In addi-
tion, it is known that the real spectrum of some
large rings like the ring of continuous functions, ab-
stract semialgebraic functions or real analytic func-
tions on a 1-dimensional paracompact real analytic
manifold coincides with the Zariski spectrum of them
[AB, GR, GJ]. What about the ring C;(M)? In the
present paper, we show that the natural map &, :
Sper(Chs(M)) — Spec(C:(M)) defined by

®,(a) = supp(e) := {f € Cy(M); f, —f € a}

is a homeomorphism when the o-minimal structure
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is polynomially bounded. See [M1] for the definition
of polynomially bounded o-minimal structures. On
the other hand, it is not known whether the map
®,. is a homeomorphism or not when the o-minimal
structure is not polynomially bounded. However,
we can show the natural continuous mapping @ :
Sper(C%:(M)) — Spec(C%(M)) is bijective. They
are the main results of the present paper.

In the present paper, r denotes the nonnegative
integer. We abbreviate the sets {x € M; f(z) > 0},
{r € M;f(z) > 0, g(x) > 0} et al. to {f > 0},
{f >0, g >0} et al. when the domain of functions
M is clear in the context. The notations f(a) > 0,
f(a) = 0 and f(a) < 0 denote the conditions f €
o\ supp(a), f € supp(«) and —f € «, respectively.

2. Artin-Lang property for definable C”
functions. Consider an o-minimal expansion R of
the real field. Let M be an affine definable C” man-
ifold or a closed definable set when r = 0. By
the same proof of [vdDM, Proposition C.9, Theo-
rem C.11], we can show the following lemmas. We
omit the proofs.

Lemma 2.1. Let f,g: M — R be continuous
definable functions which are of class C" on M \
g 1(0) with f~1(0) C g=1(0). Then there exist an
odd increasing definable C" function ¢ : R — R
and a definable C" function h : M — R such that
¢ is a bijection and r-flat at 0 and ¢pog = h- f.
Furthermore, if R is polynomially bounded, we can
choose a polynomial function x — x™ as ¢ for some
odd n € N.
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Lemma 2.2. Let A be a closed definable set of
M, then A is the zero set of a definable C" function
on M.

As a corollary of the above two lemmas, we can
show the following lemma.

Lemma 2.3. Let f be a definable C" function
on M. Set A:={x € M; f(z) > 0}. Then there
exist definable C" functions g,h : M — R such that

gla =0, h7(0) C f7(0) and h*(2)f(x)+g(x) > 0

forall x € M.
Proof. First define a continuous definable func-
tion F': M — R by

Fla) = {0 —f@)

Remark that F is of class C" outside of F~1(0).
There exists a definable C" function G : M —
R with G71(0) = A by Lemma 2.2. Hence, by
Lemma 2.1, there exist a definable C” function h :
M — R and an odd increasing definable bijection
¢ : R — R of class C" with ¢ o G = h - F. Set
g := (¢ 0G)?, then g~1(0) = A. In this setting, it is
obvious that A=1(0) C f~1(0) and h?f + g = h®f +
h?F? > 0. O

Let Vi denote the lattice consisting of all closed
definable subsets of M. Define €, as the family of
all prime Vj;-filters. Consider €;; as a topological
space as follows: A subset U of €, is an open basis
if there exists a finite sequence fi,..., fi € C(M)
such that U = {F € €;V ¢ F}, where V :=
U, {z € M; fi(w) < 0}.

We define maps between the space of all proper
ideals of C%;(M) and the space of all Vy,-filters.

Proposition 2.4. For an ideal I of C(M),
the family Z(I) of definable closed subsets of M de-
fined as follows is a Vyr-filter.

Z(I) = {f10) fel}

Conversely, for a Vi-filter F, the subset Z(F) of
Ch:(M) defined as follows is an ideal.

I(F) = {f € Cis(M); f71(0) € F}.

Furthermore, if F is a prime filter, the ideal Z(F) is
prime and the induced map

T : €y — Spec(Ch(M))

if ¢ A
if z€A.

18 COntinuous.
Proof. We first show the first statement. Let
A, B € Z(I), then A = f~1(0) and B = g~1(0) for
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some f,g € I. ANB = (f*+¢%)"1(0) € Z(I). If C €
Vi and A C C, there exists a definable C” function
h: M — R with C = h~=1(0) by Lemma 2.2. Then
C = (h-f)~1(0) € Z(I). It is obvious that § & Z(I).

We next show the second statement. Let f,g €
Z(F) and h € C%(M). Set A = f~1(0) and B =
g 1(0), then ANB € F. Then F 3 ANB C (f +
g)~1(0) € F by the definition of a Vj,-filter. Hence
f+g € I(F). The product h - f is an element of
I(F) because F > A C (h- f)~1(0) € F.

We show the last statement. Assume that F is
a prime Vis-filter. Let f,g € C(M) with f-g €
Z(F). Then f~1(0)Ug~1(0) € F. Since F is prime,
f7H0) € For go(0) € F. Hence f € I(F) or g €
Z(F).

Let f € C5(M). Then

I '({p € Spec(Ci(M)); f € p})
={Feey; f1(0) e F}.

Hence 7 is a continuous map. L]

It is obvious that I C Z(Z([)) for any ideal I of
Cl¢(M). Hence there exists a one-to-one correspon-
dence between the space of all Vi -ultrafilters and
Specmax(Cle(M)).

Corollary 2.5. A prime ideal of Cl(M) is
contained in only one maximal ideal.

Proof. Let p be a prime ideal of Cj;(M). Let
my and my be two distinct maximal ideals containing
p. There exist two distinct Vi -ultrafilters F; and
Fo such that mq = Z(F;1) and me = Z(F3) as above.
Since F; and F» are ultrafilters, there exist closed
definable subsets A7 € F; and As € Fo with A1 N
Ay = (. Choose large definable closed subsets V; and
V3 of M such that A; C Vi, Ay C Vo, M =V, U Vs,
ANV =0 and Ay NV, = (). There exist definable
C" functions f1, f2 : M — R such that Vi = f;(0)
and Vo = f;'(0) by Lemma 2.2. By the definition,
fi-fo=0,m1 35 f1 € mg and my & fo € my. Since
pis real, f{ € p or fo € p. This contradicts the
assumption that p C my N mo. L]

Lemma 2.6. Let F be a prime Vys-filter. Set

a(F) = {f € C4(M); f71([0, +00)) € F}.

Then a(F) is a prime cone with supp(a) = Z(F).
Proof. It is easy to show this lemma. Hence
we omit the proof. L]
Lemma 2.7. Let f be a nonnegative definable
C" function on M and o be a prime cone of Cf(M)
such that supp(«) = Z(F) for some prime Vys-filter
F. Then f € a.
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Proof. We may assume that f & supp(«). De-
fine a continuous definable function F': M — R by

F(z) = {o J(@)

There exists a definable C” function G : M — R
with G~1(0) = F~1(0) by Lemma 2.2. By Lemma
2.1, there exist a definable C" function h : M — R
and an odd increasing definable bijection ¢ : R — R
of class C” with ¢oG = h-F. Hence h?f = (hF)? =
(o @G)? € a. Since h~1(0) C f71(0), h & supp(a),
and therefore, h? € a \ supp(a). Therefore, f € a.
(]

Proposition 2.8. Let F be a prime Vi, -filter,
then there exists a unique prime cone o of Cl(M)
with supp(a) = I(F).

Proof. The existence of « follows from Lemma
2.6.

We next show the uniqueness of a. Let (3 be a
prime cone of C:(M) with supp(5) = Z(F).

We will show that § C a. Choose an arbitrary
f € 8. We may assume without loss of generality
that f € Z(F). We lead contradiction under the
assumption that f & «, namely, {f > 0} ¢ F. Since
F is prime, {f < 0} € F. By Lemma 2.3, there
exists g, h € C3(M) such that g € Z(F), h & Z(F)
and h2f+g <0 on M. Since g € supp(a), h2f+g €
a. On the other hand, by Lemma 2.7, —(h?f + g) €
a. Therefore, h%f +g € supp(a). Since f & supp(a),
h must be contained in supp(«). This contradicts the
condition A=1(0) C f~1(0).

We will show the opposite inclusion o C 3. Let
f € a. By the definition, {f > 0} € F. We may
assume that f & Z(F). There exist h & supp(5) and
g € supp(B) with h?f + g € 8 by Lemma 2.3 and
Lemma 2.7. Hence, h?f € (3. Since h ¢ supp(f),
fep. Il

We consider the case when R is polynomially
bounded in the rest of this section.

if f(x)>0
elsewhere.

Lemma 2.9. Assume that R is polynomially
bounded. Let p be a prime ideal of Ch(M), then the
equation p = Z(Z(p)) holds true.

Proof. Set F := Z(p). We have only to show
that p = Z(F). It is obvious that p C Z(F). We
show the opposite inclusion.

Let g € Z(F), then ¢g~1(0) € F. By the defini-
tion of F, there exists f € p with f=1(0) = g~1(0).
There exist n € N and h € CJ(M) with ¢" = hf by
Lemma 2.1. Since p is prime, g € p ]
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Lemma 2.10. Assume that R is polynomially
bounded. Let p be a prime ideal of Cl(M), then
Z(p) is a prime Viys-filter. Furthermore, the induced
map

Z : Spec(Cle(M)) — €y

18 continuous.

Proof.  We show the first statement. Let
A, B € Vyy such that AU B € Z(p). There exist
f,9 € Ci(M) and h € p with f=1(0) = A, g~1(0) =
B and h=1(0) = AU B by Lemma 2.2. By Lemma
2.1, there exist n € N and u € Cl;(M) with (fg)" =
uh € p. Since p is prime, f € p or g € p, that is to
say, A € Z(p) or B € Z(p).

We next show the last statement. Let U be an
open basis of €j;. There exists a finite sequence
fi,oo o  fw € C(M) such that U = {F € &,V ¢
F}, where V := U {z € M;fi(z) > 0}. By
Lemma 2.2, there exists a definable C” function g
on M with ¢g=1(0) = V. We have only to show the
equation

Z7HU) = {p € Spec(C¢(M)); g & p}

to show the last statement of this lemma. Let p be
a prime ideal of C%;(M). First assume that g € p.
Then V = g~1(0) € Z(p). Hence Z(p) € U. We next
assume that Z(p) € U, namely, V € Z(p). Then g €
Z(Z(p)) = p by Lemma 2.9. We have shown the
above equation and that the map Z is continuous.
[
Theorem 2.11. Consider a polynomially
bounded o-minimal expansion of the real field. Fix
a nonnegative integer r. Let M be an affine defin-
able C™ manifold or a closed definable set when r =
0. Then the natural continuous map

@, : Sper(Cg(M)) — Spec(Cge (M)

is a homeomorphism and its inverse map is o Z.

Proof. Since a and Z are continuous maps,
we have only to show that 8 = «(Z(supp(8))) and
supp(a(Z(p))) = p for all prime cones 3 of Cl(M).
However, this equation is obvious by Proposition 2.8
and Lemma, 2.9. (]

Corollary 2.12 (Artin-Lang Property for de-
finable C" functions). Consider a polynomially
bounded o-minimal expansion of the real field. Fix
a nonnegative integer r. Let M be an affine de-
finable C™ manifold or a closed definable set when
r = 0. Then the continuous map
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a: €y — Sper(C(M))

is a homeomorphism.

Proof. The mapping Z is a homeomorphism by
Proposition 2.4, Lemma 2.9. Hence this corollary is
obvious by Theorem 2.11. ]

3. Real spectrum of ring of continu-
ous definable functions. We showed the one-to-
one correspondence between €y and Spec(Cle(M))
when R is polynomially bounded. However, this cor-
respondence does not hold true when R is not poly-
nomially bounded. The following example reveals
this fact.

Example 3.1. Let R be an o-minimal ex-
pansion of the real field which is not polynomially
bounded. Remember that the exponential function
exp : R — R is definable in R by [M2]. Fix a non-
negative integer r. Let e : R — R be the definable
C*° function defined by

1
exp(;) if <0
e(z) =40 it =0

1
exp(—-)
x
We define an ideal I of CJ;(R) as follows: A definable
C" function f : R — R is contained in [ if, for any
n € N and C' > 0, there exists ¢ > 0 such that
|f(z)] < C-a™for 0 < x < t. It is easy to see that
I is a prime ideal. By the definition, e(z) € I and
x ¢ I. We next define a prime ideal J of CJ;(R)
as follows: A definable C” function f : R — R is
contained in J if f(0) = 0. It is obvious that I #
J = ZI(Z(I)) and J = Z(Z(J)). Hence Z is not
injective and Z is not surjective.

if x>0.

Lemma 3.2. Consider an o-minimal expan-
sion of the real field and let M be a definable closed
set. Let F be a prime Vy-filter and f be a contin-
uous definable function on M. Then the following
condtions are equivalent.

1. {x e M; f(x) >0} e F
2. There exists g € CY(M) such that f — g* €

Z(F).

Proof. First assume that {f > 0} € F. Define
continuous definable functions g,h : M — R by

o(a) = {0 fG) it f(x) >0

elsewhere

and
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it f(x) <0

0 elsewhere.

Then h € Z(F) and f — g*> = h.

Conversely assume that h := f — g% € T(F). Set
A= h~1Y0) € F. Then f is nonnegative on A by
the assumption. Hence A C {f > 0}, and therefore:
{f>0}erF. O

Lemma 3.3. Consider an o-minimal expan-
sion of the real field and let M be a definable closed
set. Let p be a proper ideal of C%:(M). We define a
subfamily F(p) of Var as follows: The empty set is
not contained in F(p) by definition and a nonempty
closed definable subset S of M is an element of F(p)
if and only if the ideal

1(S) = {f € Cq(M); f(x) = 0(Vz € 5)}

is contained in p.

Then the family F(p) is a Viar-filter. Further-
more, if p is prime, so is F(p).

Proof. We first show that F(p) is a Vjs-filter.
By the definition, § & F(p). Let S € F and T be
a closed definable subset of M containing S. Since
I(T) C I(S), I(T) C p, namely, T € F(p).

Let A, B € F(p). We will show that AN B €
F(p). We have only to show that a continuous de-
finable function f : M — R with AN B C f~1(0)
is contained in p. Define the continuous definable
function G : AU B — R as follows:

0
G(x) =
9= oo

There exists a continuous definable function g : M —
R with glaup = G by [vdD2, Corollary 8.3.10]. By
the definition of g, g € I(A) and it is also obvious
that f — g € I(B). Since I(A) C p and I(B) C p
by the definition, f € p. We have shown that (A N
B) C p and finished to show that F(p) is a Vj-filter.

We next show the last statement of this lemma.
Let V and W be definable closed subsets of M such
that VUW € F(p). We lead the contradiction un-
der the assumption that VW & F(p). There exist
definable continuous functions u € I(V) \ p and v €
I(W)\ p. Then the function u-v vanishes on VUW,
hence, u-v € I(VUW) C p. Since p is a prime ideal,
u € p or v € p. Contradiction. L]

re A
r€B

Lemma 3.4. Consider an o-minimal expan-
sion of the real field and let M be a definable closed
set. Let p be a prime ideal of C%(M) and F(p) be
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the prime Vas-filter defined in Lemma 3.3. Let f be
a continuous definable function on M such that

{z € M;|f(x)] < g(x)} € F(p)

for some g € p. Then f € p.

Proof. We first reduce to the case when {|f| <
gt = M. Set h(x) := max(0,|f(z)| — g(z)), then
h € Z(F(p)) C p. Replace g with g + h, then the
condition {|f| < g} = M holds true.

First consider the case when g~1(0) € F(p).
Then f~1(0) € F(p) because g~1(0) C f~1(0).
Hence f € Z(F(p)) C p.

We next consider the case when g=1(0) & F(p).
There exists h € C%(M) with h & p and h=1(0) =
g~ 1(0) by the definition of F(p). Define a definable
function ¢ : M — R by

if g(x)#0
0 if g(z)=0.

The definable function ¢ is continuous because the
function f/g on {z € M;g(x) # 0} is bounded.
Hence hf = ¢g € p. Since h € p, f € p. L]

Theorem 3.5. Consider an o-minimal expan-
sion of the real field and let M be a closed definable
set or an affine definable manifold. Then the natural
continuous mapping

g : Sper(Cg;(M)) — Spec(Cg(M))

is bijective.

Proof. We first reduce to the case when M is
a closed definable set. Let M be an affine definable
manifold. We may assume that M is bounded in R".
Set T'= M \ M. There exists a continuous definable
function v : R"® — R with v=1(0) = T. Identify M
with the image of M under the map (id,1/v) : M —
R, then we may assume that M is closed in R".

We have only to show that, for any prime ideal
p of C§;(M), there exists a unique prime cone [ of
CY%(M) with supp(B3) = p. Let F(p) denote the
prime filter defined in Lemma 3.3. Set § := p U
a(F(p)). We will show that § is a prime cone of
CS(M). It is obvious that —1 ¢ . It is also easy
to see that ab € 3 if a,b € 3. Let a,b € C%(M).
Assume that ab € 8 and a &€ (. If ab € p, then
b € p because p is a prime ideal. Hence —b € p C (3.
If ab € a(F(p)), then —b € a(F(p)) C B because
a(F(p)) is a prime cone.

We next show that a +b € g if a,b € 3. The
claim is obvious when a,b € a(F(p)) or a,b € p.
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Hence we may assume that a € a(F(p)) \p and b €
p\ a(F(p)). We will show that a + b € a(F(p)).
Assume the contrary, namely, that A = {a + b <
0} € F(p). Set B = {a > 0} € F(p). Since AN
B C {la| < =b}, {la] < —=b} € F(p). By Lemma 3.4,
a € p. Contradiction. We have shown that (§ is a
prime cone. It is obvious that supp(8) = p.

Let ' be a prime cone of C%(M) with p =
supp(/’). Then 3’ = 3. We will show this fact. We
have only to show that f € ' if and only if { f > 0} €
F(p) for any f & p. If {f >0} € F(p), then f—g? €
Z(F(p)) C p for some g € C{(M) by Lemma 3.2.
Since g? € ' by the definition of prime cones, f €
B'. Assume conversely that {f > 0} € F(p). Since
F(p) is prime, {—f > 0} € F(p). We can show that
—f € ' in the same way as above, using Lemma 3.2.

Since f & supp(3'), f ¢ 3", U
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