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Poincaré formulas of complex submanifolds

By Hong Jae Kang,∗) Takashi Sakai,∗∗) Masaro Takahashi,∗∗∗) and Hiroyuki Tasaki
∗∗∗∗)

(Communicated by Heisuke Hironaka, m. j. a., June 15, 2004)

Abstract: We formulate Poincaré formulas of complex submanifolds in almost Hermitian
homogeneous spaces, using Howard’s formulation of Poincaré formulas in Riemannian homogeneous
spaces. This formula is an extension of Santaló’s one in complex space forms.
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1. Introduction. Let M and N be subman-
ifolds in a Riemannian homogeneous space G/K.
Then many works in integral geometry have been
concerned with computing integrals of the following
form ∫

G

vol(M ∩ gN)dµG(g).

The Poincaré formula means equalities which repre-
sent the above integral by some geometric invariants
of submanifolds M and N of G/K.

Santaló [3] showed that if M and N are com-
plex submanifolds in a complex space form G/K

which satisfy dimM + dimN ≥ dim(G/K) then the
Poincaré formula is expressed as a constant times
the product of the volumes of M and N . Howard
[1] obtained the generalized Poincaré formula in Rie-
mannian homogeneous spaces, and he reformulated
Santaló’s Poincaré formula.

In the present paper, we attempt to describe
this formula for complex submanifolds M and N of
almost Hermitian homogeneous spaces G/K. And
we show that the Poincaré formula can be expressed
as a constant times the product of the volumes of M
and N if K acts irreducibly on an exterior algebra
(Theorem 3.1).

The second named author [2] recently extend
the main result of the present article in the case of
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irreducible Hermitian symmetric spaces.

2. Preliminaries. In this section, we shall
review the generalized Poincaré formula in Rieman-
nian homogeneous spaces obtained by Howard [1].

Let E be a finite dimensional real vector space
with an inner product. For two vector subspaces V
and W of dimension p and q in E, take orthonormal
bases v1, . . . , vp and w1, . . . , wq of V and W respec-
tively, and define

σ(V,W ) = ‖v1 ∧ · · · ∧ vp ∧ w1 ∧ · · · ∧ wq‖.

This definition is independent of the choice of or-
thonormal bases. Furthermore, if p + q = dimE,
then

σ(V,W ) = σ(V ⊥,W⊥).

where V ⊥ and W⊥ are the orthogonal complements
of V and W respectively.

Let G be a unimodular Lie group and K a closed
subgroup of G. We assume thatG has a left invariant
Riemannian metric that is also invariant under the
right actions of elements of K. This metric induces a
G-invariant Riemannian metric on G/K. We denote
by o the origin of G/K. For x and y in G/K and vec-
tor subspaces V and W in Tx(G/K) and Ty(G/K),
we define σK(V,W ) by

(2.1)

σK(V,W ) =
∫

K

σ((dgx)−1
o V, dk−1

o (dgy)−1
o W )dµK(k)

where gx and gy are elements of G such that gxo =
x and gyo = y. This definition is independent of
the choice of gx and gy in G such that gxo = x and
gyo = y. With these facts, the generalized Poincaré
formula in homogeneous spaces can be stated,
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G

vol(M ∩ gN)dµG(g)(2.2)

=
∫

M×N

σK(T⊥
x M,T⊥

y N)dµM×N (x, y).

3. Poincaré formulas of complex sub-
manifolds.

Theorem 3.1. Let G be a unimodular Lie
group and G/K an almost Hermitian homogeneous
space of complex dimension n. Assume that K acts
irreducibly on ∧p(To(G/K))(1,0). Take two almost
complex submanifolds M and N of G/K with

dimCM = p, dimCN = n− p.

Then we have∫
G

�(M ∩ gN)dµG(g) =
vol(K)(

n
p

) vol(M)vol(N).

Proof. Let g and k denote the Lie algebras of
G and K respectively, let m denote some vector sub-
space of g such that g = k⊕m (direct sum decompo-
sition). Then we can identify m with To(G/K) in the
natural manner. We denote by J and 〈·, ·〉 the com-
plex structure and the inner product on m induced
from the almost complex structure and from the G-
invariant Riemannian metric on G/K respectively.

Let {ui, Jui}p
i=1 and {vi, Jvi}p

i=1 be orthonor-
mal bases of (dgx)−1(Tx(M)) and (dgy)−1(T⊥

y (N))
respectively. We define

ξi =
1√
2

(ui −
√−1Jui), ηi =

1√
2

(vi −
√−1Jvi),

then {ξi}p
i=1 is a unitary basis of the tangent space

(dgx)−1(Tx(M))(1,0) of type (1, 0) and {ηi}p
i=1 is that

of (dgy)−1(T⊥
y (N))(1,0). Hence we have the following

equation:

u1 ∧ · · · ∧ up ∧ Ju1 ∧ · · · ∧ Jup

= (
√−1)pξ1 ∧ · · · ∧ ξp ∧ ξ̄1 ∧ · · · ∧ ξ̄p,

v1 ∧ · · · ∧ vp ∧ Jv1 ∧ · · · ∧ Jvp

= (
√−1)pη1 ∧ · · · ∧ ηp ∧ η̄1 ∧ · · · ∧ η̄p.

We extend 〈·, ·〉 to a complex bilinear form on mC,
and denote by the same symbol. We note that if X
and Y are both in the m(1,0) (or m(0,1)) then 〈X,Y 〉 =
0. So we have〈
u1 ∧ · · · ∧ up ∧ Ju1 ∧ · · · ∧ Jup,

Ad(k)(v1 ∧ · · · ∧ vp ∧ Jv1 ∧ · · · ∧ Jvp)
〉

=
〈
ξ1 ∧ · · · ∧ ξp ∧ ξ̄1 ∧ · · · ∧ ξ̄p,

Ad(k)(η1 ∧ · · · ∧ ηp ∧ η̄1 ∧ · · · ∧ η̄p)
〉

= det

[〈
ξi, Ad(k)ηj

〉 〈ξi,Ad(k)ηj〉〈
ξ̄i, Ad(k)ηj

〉 〈
ξ̄i,Ad(k)ηj

〉]

=
∣∣∣det

[〈
ξi, Ad(k)ηj

〉]∣∣∣2
≥ 0.

From (2.1) we have

σK(T⊥
x M,T⊥

y N)

=
∫

K

∣∣∣det
[〈
ξi, Ad(k)ηj

〉]∣∣∣2 dµK(k)

=
∫

K

∣∣∣〈ξ1 ∧ · · · ∧ ξp, Ad(k)(η1 ∧ · · · ∧ ηp)
〉∣∣∣2

· dµK(k).

Fix η = η1 ∧ · · · ∧ ηp, and for any X and Y in
∧p(m(1,0)) we define

Qη(X,Y ) =
∫

K

〈
X ∧ Ȳ , Ad(k)(η ∧ η̄)

〉
dµK(k).

Then Qη is a Hermitian form on ∧p(m(1,0)) invari-
ant by K-action. From Schur’s lemma, since K acts
irreducibly on ∧p(m(1,0)), there exists a positive con-
stant Cη such that

Qη(X,Y ) = Cη〈X,Y 〉.
Hence we get

σK(T⊥
x M,T⊥

y N) = Qη(ξ, ξ) = Cη.

This implies σK(T⊥
x M,T⊥

y N) is independent of
T⊥

x M . Similarly σK(T⊥
x M,T⊥

y N) is also indepen-
dent of T⊥

y N . Thus σK(T⊥
x M,T⊥

y N) is constant C.
Let {Xi}r

i=1 be a unitary basis of ∧p(m(1,0)), and
put

r = dim(∧p(m(1,0))) =
(
n

p

)
.

Since for any i and j∫
K

∣∣∣〈Xi, Ad(k)Xj

〉∣∣∣2 dµK(k) = C,

we have

rC =
r∑

i=1

∫
K

∣∣∣〈Xi, Ad(k)X1

〉∣∣∣2 dµK(k)

=
∫

K

r∑
i=1

∣∣∣〈Xi, Ad(k)X1

〉∣∣∣2 dµK(k)

=
∫

K

‖Ad(k)X1‖2dµK(k)

= vol(K).
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This completes the proof.
Corollary 3.2. Let G/K be an irreducible

Hermitian symmetric space. Let M be a complex
curve and N a complex hypersurface of G/K. Then
we have∫

G

�(M ∩ gN)dµG(g) =
vol(K)

dimC(G/K)
vol(M)vol(N).

This corollary in the case where N is the cut
locus of a point in G/K has been already obtained in
[4], although the constant is expressed in a different
way.

If p > 1, then we can have many examples which
holds the situation of Theorem 3.1. In the case where
G/K is an irreducible Hermitian symmetric space,
we can give p (> 1) when K acts irreducibly on

∧p(To(G/K))(1,0)

in the following table:

Compact type

A III SU(l)/S(U(m) × U(l −m))
(any p (if m = 1), empty (if m �= 1))

D III SO(2l)/U(l) (p = 2)
BD I SO(2l)/SO(2) × SO(2l− 2)

(p �= l − 1)
SO(2l+ 1)/SO(2) × SO(2l− 1)
(any p)

C I Sp(l)/U(l) (p = 2)
E III (e6(−78), so(10) + R) (p = 2, 3)
E V II (e7(−133), e6 + R) (p = 2, 3, 4)

For the rest of this section we will consider
the case where ∧p(To(G/K))(1,0) is reducible by K-
action. The other conditions are same with Theo-
rem 3.1.

∧p(To(G/K))(1,0) =
s⊕

i=1

Vi

denotes the irreducible decomposition by K-action.
Let X and Y be complex vector subspaces of di-
mension p in (To(G/K))(1,0) and take unitary bases
{ξi}p

i=1 and {ηi}p
i=1 of X and Y respectively. We de-

note by X̂i and Ŷi be the Vi-components of ξ1 ∧ · · ·∧
ξp and η1 ∧ · · · ∧ ηp respectively. We define A(X,Y )
by

A(X,Y ) =
s∑

i=1

vol(K)
dimVi

‖X̂i‖2‖Ŷi‖2.

Theorem 3.3. If Vi and Vj are not equivalent
when i �= j, then we have∫

G

�(M ∩ gN)dµG(g)

=
∫

M×N

A(TxM,T⊥
y N)dµM×N (x, y).

Proof. From the proof of Theorem 3.1, we have

σK(X,Y )

=
∫

K

∣∣∣〈ξ1 ∧ · · · ∧ ξp, Ad(k)(η1 ∧ · · · ∧ ηp)
〉∣∣∣2

· dµK(k)

=
∫

K

∣∣∣∣∣
s∑

i=1

〈
X̂i, Ad(k)Ŷi

〉∣∣∣∣∣
2

dµK(k)

=
s∑

i,j=1

∫
K

〈
X̂i, Ad(k)Ŷi

〉 〈
X̂j , Ad(k)Ŷj

〉
· dµK(k).

The last integrals vanish when i �= j by the Peter-
Weyl theorem. Therefore we get

σK(X,Y ) =
s∑

i=1

∫
K

∣∣∣〈X̂i, Ad(k)Ŷi

〉∣∣∣2 dµK(k).

By the similar way with Theorem 3.1, we can con-
clude that each integral in just above equation is con-
stant and determine it.

σK(X,Y ) =
s∑

i=1

vol(K)
dimVi

‖X̂i‖2‖Ŷi‖2 = A(X,Y ).
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