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Abstract:

For each positive integer p, there exists a holomorphic curve of order p mean

type with an infinite number of deficiencies, the sum of which to the a power is divergent, where

0<a<1/3.
Key words:

1. Introduction. Let f = [f1,..., fat1] be
a holomorphic curve from C' into the n-dimensional
complex projective space P"(C') with a reduced rep-
resentation (f1,..., foy1) : C — C" ™1 — {0}, where
n is a positive integer. We use the following nota-
tions:

IF I = (AP A+ + [ fara ()2

and for a vector @ = (ay,...,a,41) € C" — {0}

lall = (lax|* + - + [ans1[*) /2,
(CL, f) = alfl + -+ an-‘rlfn-i-la
(a,f(2)) = a1 fi(z) + -+ any1far1(2).

The characteristic function of f is defined as fol-
lows (see [8]):

W) TS =5 [ ogllsre)las-tog 5]

We suppose throughout the paper that f is tran-
scendental; that is to say, lim,_ T(r, f)/logr =
oo and f is linearly non-degenerate over C; namely,
fi,--., fant1 are linearly independent over C.

For meromorphic functions in the complex plane
we use the standard notation of Nevanlinna theory
of meromorphic functions ([4, 5]).

For a € C"*' — {0}, we write

L lallllf )
mir,a. f) = %/ 87, f(re)|

N(r,a,f) = N(r,1/(a, f))-

We then have the first fundamental theorem:

de,

2000 Mathematics Subject Classification. Primary 32H30;
Secondary 30D35.

*)Present address: Chiyoda 3-16-15-302, Naka-ku, Nagoya,
Aichi 460-0012.

Holomorphic curve; deficiency.

(2)  T(r,f)=m(r,a,f)+N(ra, f)+O0(1)
([8], p-76). We call the quantity

: N(r,a,f) s m(r,a,f)
o(a,f)=1- llirisgp W = hrrgggf W
the deficiency (or defect) of a with respect to f. We
have 0 < d(a, f) <1 by (2).

Let X be a subset of C" "' —{0} in N-subgeneral
position; that is to say, #X > N+ 1 and any N +1
elements of X generate C™!, where N is an inte-
ger satisfying N > n. We say that X is in general
position when X is in n-subgeneral position.

Cartan ([1], N = n) and Nochka ([6], N > n)
gave the following:

Theorem A (Defect relation).
ments a; (j=1,...,q) of X,

Z? 15(aj,f) <2N —n+1,
Jj=

where 2N —n+1 < g < oo (see also [2] or [3]).

Let Y be the set of a € X satisfying d(a, f) >
0. Then, as is well-known, Y is at most countable.
When n > 2, it is not difficult to give holomorphic
curves for which Y is finite, but it is not so easy
to give those for which Y is infinite. It is of some
interest to construct examples of holomorphic curves
with an infinite number of deficiencies when n > 2.

The purpose of this paper is to prove the fol-
lowing theorem when n > 2 by applying the method
given in Section 4.3 of [4].

Theorem. For any positive integer p, there
exists a holomorphic curve of order p mean type with
an infinite number of deficiencies.

2. Preliminary lemmas.

For any q ele-

In this section we
prepare some lemmas for later use. Main idea of this
section is given in Section 4.3 of [4]. Let {n,} be a

decreasing sequence satisfying
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3) 7n,>0 and ZV=1 =1, n=m

and put

k—1
(4) 6o=0, =7y e (B=1,2,3,).

Then, {0y} is strictly increasing and it tends to

o o0
™ Zyzo Ny =7nNo+ 7 ZV=1 n, < 2w

as k — oo.

Lemma 1 ([4], p.99). For k>1if

1 1
(5) 0, — gﬁnk <0 <0+ gﬁnk

and z = re'?, then
(a) cos(f, —0) < cos(2mmy) (v # k);
(b) |exp{ze " }| < exp {rcos2mne} (v # k).
Proof. (a) This inequality is given in [4], p. 99.
(b) From (a) we have the inequality
[expfze% )] = exp{re 0}
= exp{rcos(d —0,)}

2
gexp{rcosgﬁnk} (v#k). O

Let m be any positive integer, {ax} an arbitrary
sequence of complex numbers such that at least two
of {ax}r>m are not equal to zero and are distinct,
{bx} a sequence of positive numbers satisfying

—E b —E b
S1 = ap| < 00, S9 = < 00
1 k:lk‘ k‘ ) 2 klk )

and we put

u(z) = Zk=1 bray exp{ze= 0},

vm(2) = Z:im by exp{ze "}
and wg(z) =0,

m—1 .
wnoa(2) = 30 anexplze %) (m>2)

for any complex numbers «j. Further we put
m—1

Ancy =300 leul (m=2).
Proposition 1. For z = re',

1) fu(2)| < s1€”; 2) Jum(2)] < s2e€”;

3) |u(2) + wim-1(2)] < (s1 4+ Am-1)e";

1) fom(2) + w1 (2)] < (52 + Apr)e”.
Proof.

Aofoa

It is easy to see this proposition, since

| eXp{Ze_w"‘ =] eXp{rei(e_ek) }

=exp{rcos(f —0;)} <e". L[]
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Lemma 2 (see [4], p.99). When 6 satisfies
(5), for z = re® and k > m we have the inequal-
1ties:

|u(2) + wm—1(2) — bray exp{ze™ %}

(6) 2
< (s1+ Am-1)exp {7" cos gﬂ"l]k},

(7)

. 2
|0 (2) — by exp{ze~ % }| < sy exp {r cos gﬂ'?]k},

|V (2) + Wp—1(2) — by exp{ze %}
(8) < (sy+ Ap_1)exp {r cos %Wnk}
and for all sufficiently large r
u(2) + wm-1(2)|

(9) 1 1 .
> ibk|ak\ exp {7’ cos gmlk} (if ar #0),

1 1
(10) |vm (2)| > §bk exp {T‘COS gwnk},

1 1
(11)  |vm(2) + wm-1(2)] > §bk exp {T‘COS §7T77k}~

Proof. 'We can prove these inequalities as in [4],
p- 99 by Lemma 1 (b). For example, we prove (6).

|u(2) + wim—1(2) — brag exp{ze*w’“ H

< w1 (2)] + Z#k b,|a, exp{ze " }|
m—1 .
< Zyzl v, exp{ze "}
+Y bolay exp{ze

2
< (Ap—1+ s1)exp {r cos 57”71@}-

Similarly we have (7) and (8). Next we prove
(9). Suppose that aj # 0. From (6) we have

|u(2) + wm—1(2)]

> by|ay exp{ze 0% }|

2
— (Ap—1 + s1) exp {r COS gﬂ"ﬂk}

= by|ay| exp{r cos(6 — i)}
2
— (Am—1 +51) exp {r cos gwnk}
1
> by|ag| exp {r cos gﬂnk}

2
— (Ap—1 + s1) exp {r COS gﬂ"ﬂk}
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= exp {7" cos %myk} (bk|ak| — (Ap—1 + s1)

2 1
X exp {r(cos gwnk — Cos gmyk) })
> Lolanl { L !
—bilai| e T COS —
<5 k|Qk| €XP 37T77k

for all suficiently large r since

2 1 LT T
cos §7r77k — cos §7r77k = —2sin Enk sin 577k < 0.
Similarly we have (10) and (11). ]
Lemma 3. u(z)+wm,—1(z) and v, (z) are lin-

early independent over C.

Proof. First of all we note that neither u(z) +
Wy —1(2) nor v, (2) is identically equal to zero by (9)
and (10). Supose that they are linearly dependent
over C. Then there is a non-zero constant a satis-
fying (u(2) + wm—1(2))/vm(z) = a. By the choice
of {ax}, there is at least one k > m such that ay #
0, a. For this k, z = re? with 6 satisfying (5) and
all suficiently large r we have

w(2) + Winm—1(2) — agvm(2)
Um(2)

0+#|a—ag| =

< (s1+ A1+ |ak|s2) exp {r(cos Zmn;,) }
- %bk exp {rcos %ﬂnk}
(s1+ A1 + |ak|s2)

b

=2

2 1
X exp{r(cos 3™k — COS 57”71@)}

(81 + Apm—1 + |ak|s2)

=2
b

. T, T
X exp{—Qr sin E”k sin 5%}’

which tends to zero as r — oo since
sin(m/6)ng sin(m/2)n, > 0. This is a contradic-
tion. We have our lemma. []
Let f = [f1,..., fn+1] be a transcendental holo-
morphic curve and for any positive integer p, we put
P(z) = zP. We consider the holomorphic curve

fOP:[f]_OP,...7fn+1OP}.

Note that f1 0 P,..., fn4+1 o P have no common
zero and are linearly independent over C.
We put

p(f) = limsup log T'(r, f)

r—00 1

(: the order of f).

Lemma 4. For any a € C""' — {0}

[Vol. 80(A),

[1] T(r,foP)=T(r?, f) and p(f o P) = pp(f);
[2] m(r,a, foP)=m(r? a,f);
3] d(a, foP)=d(a,f)
Proof. [1] By the definition (1) and as
[[f o P(2)|| = || f(2P)]| we have

T(r,foP)

1 2 )
o [ logllfG7e) a8 - log /O]
T Jo

1 2pm

o ), log || f(17€'?)||d¢ — log || £ (0)]

1 2m )
=5 [ wsllrGrenas ~ og O]
=707, f),

The second assertion can easily be obtained
from this relation.

[2] From the definition of m(r, @, f o P), we eas-
ily obtain this relation by the same way as in [1].

[3] From both [1] and [2], we have

.. .m(r,a, foP)

oa, foP)=liminf = =5
m(r?,a, f)
T ) éa, f). O

3. Examples of holomorphic curve with
an infinite number of deficiencies. We shall
give examples of holomorphic curve with an infinite
number of deficiencies in this section. Suppose that
n > 2 throughout this section. Let {n;} and {6}
be those given in (3) and (4) of Section 2 respec-
tively. Let Y = {ax = (a1k,...,ank, 1) € C"'H} be
in general position and {c;x}3>, (j = 1,...,n) be
sequences of positive numbers satisfying

det(cjx) (J,k=1,...,n)#0,

g =cCp = =cpp=c (k=nn+1,...)

= liminf

and

Sj:Zk:lcjk<oo (j:l,...,n),

o0 n
Sn+1 = Zk:l (ijl cjk|ajk|) < 0.

Put

pj(z) = Zk:l cirexp{ze” "} (j=1,...,n),
Pnt1(2) = — Zk:l (ijl Cjkajk) exp{ze” "},

P1(z) = Z:;n Cr exp{zeiie’“ 1,
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and p; — Y1 =h; (j=1,...,n).

Note that if we put a) = Y7  aj (b =
1,2,...), then {aj} satisfies the condition on {aj}
given in Section 2 since Y is in general position.

Proposition 2. For |z| =,

lpi(z)] < Sje" (1 =1,2,...,n+1).

Proof. For any k and z = re?, we have the

inequality
|exp{ze" " }| = | exp{re!®=0)}|
= exp{Re(rei((’*e’“))} <e,
so that we easily have our proposition. ]
Proposition 3. ¢1,...,p,11 have no com-
mon zeros.

Proof. We have only to prove that ¢1,..., ¢,
have no common zeros. Suppose that they have a
common zero at z = z,. Then, as

n—1 .
it holds that

n—1 i
0= Zk:l cikexp{zoe Y +ih1(z0) (j=1,...,n),
from which we have for j =1,...,n—1

n—1 .
(12) 0= Zk:l (¢jk — Cnk) exp{zoe "%}

Here, by the choice of {¢;z} it holds that
0 # det(cjx) (4,k=1,...,n)
= cpndet(cjr —cnr) (J,k=1,...,n—1),
¢nn 7 0, so that we have from (12) that
exp{zoe ¥} =0 (k=1,...,n—1),

which is a contradiction. We have our proposition.

[

Proposition 4. ¢1,..., 0,1 are linearly in-
dependent over C.

Proof. Put aip1 + -+ + apnt1¢ns1 = 0. Then

we have

(13) alhl + "'+anhn+an+190n+l
+ (a1 + -+ ap)hy = 0.

Now, suppose that o, 1 # 0. Then, by the definition
of pn41,9Y1 and hq, ..., h, we can take m = n,

U= Ppy1, W1 = (hy+ -+ anhy)/ang
and v, = v in Lemma 3 to obtain that

(arhy 4+ -+ anhy)/0ni1 + 1 and oy
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are linearly independent over C. But the relation
(13) reduces to the relation

OénJrl{(Oélhl + -+ anhn)/an+1 + QDnJrl}
+ (a1 4+ ap)r =0,
which means that (a1hy 4+ -+ + aphyn) /st + Pt
and v are linearly dependent over C since ay41 #

0. This is a contradiction. «,+; must be equal to

zero. So we have from (13)
(14)  arhi+ -+ anhy + (@1 + -+ ay)1 = 0.

Next suppose that ay + -+ -+ a,, # 0. Then we have
from (14)

(Z::1 O‘jhj) [l + -+ an) + 1 = 0.

But, by applying (11) in Lemma 2 to m = n,
v, = Y1 and w,_1 = (Z?Zl ozjhj)/(oq + -+ ay)
we have that

(Z::1 ajhj) [lo + -+ an) + 1 #0,

which is a contradiction. This means that o +---+
a, must be equal to zero. Asa,, = —a1— - —aQp_1,
we have from (14) that

(15) al(hl - hn) +-+ an—l(hn—l - hn) =0.

Here,

hi(2) = ha(2) = 3

(j=1,...,n—1), det(cjr —cnr) # 0 (see the proof of
Proposition 3) and exp{ze™"1}, ... exp{ze "n-1}
are linearly independent over C since 0 < #; < --- <
0,1 < 27, so that hy — hy,...,hp_1 — h, are lin-
early independent over C. We have from (15) that

n—1 0
(¢jk — cni) exp{ze™** }

a; = =aqa, 1 =0, and so a,, = 0. We have that
©1,...,Pnt1 are linearly independent over C. L]
We put ¢ = [p1,...,¢nt1). Then, ¢ is a

non-degenerate holomorphic curve from C' into the

n-dimensional complex projective space P"(C) by

Propositions 3 and 4.
Proposition 5.
Proof. As

le(re)ll = (Jpr(re™®) P + - + [pn4r (re’®) )1/

1/2
n+1 2 r
(T
by Proposition 2, we have this proposition by the
definition of T'(r, ¢). U

As in the case of Lemma 2, we have the following
estimates.

T(r,p) <r+0O(1).
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Proposition 6.
2l =r

Ont1(z) + (ijl cjkajk> exp{ZG*iek}
0
< Zwﬁk ‘(Z c],,a],,) exp{ze” "%}

2
< Sp41€xp {r cos gwnk},

When 0 satisfies (5), for

(16)

(17)
—iy, 2
\‘Pj(z) — Cjk exp{ze H < S exp {r cos gwnk}

G=1,...

(18)

,n) and for all sufficiently large v
1 1
lp;(2)] = 5 Cik eXP {r cos 577771@}

(j=1,...,n). 4
Proposition 7. When z = re? and r is any
sufficiently large number, we have uniformly for 6
satisfying (5) in Lemma 1
|lak]| [le(re)]]
|(ak, p(rei?))|
||ak || (maxi<j<n cji) exp {r cos 3 }
T 2(Shy1 + 205y lajk]Sy) exp {rcos Zmn;}

e'?)) £ 0 for

Proof. First we note that (ax, o(r
any ay € Y due to Proposition 4.

From (18) for all suficiently large r and for 6
satisfying (5) in Lemma 1 we have the inequality

i60 60
> m i
llak[[lo(reD)l| = [lax]] max fo;(re™)]

> M max c kexp{rcos lﬂ'nk}.
2 1<j<n ’ 3

From (16) and (17) for 6 satisfying (5) in
Lemma 1 we have the inequality

[(ar, ¢(2))|
< gon+1(z) + (Z;L_l cjkajk) eXp{Ze*iOk}

>
2
< Spy1€xp {r cos gﬂ'nk}
(327, oty ) exp {reom Sone}
i a;k|Sj ) exp q r cos s,
n 2
= (Sn_;_l + ijl |ajk\5j> exp {7" cos gﬂ?]k}.

From these two inequalities we have our proposition.

O

lajk(p;(2) = cjk eXP{Zeiwk})‘
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Proposition 8.
have the inequality

For all sufficiently large r, we

2
m(r,ap, @) = zrni + O(1).

Proof. From the definition of m(r, ax,y), we
have by Proposition 7 for 8y = 7 /3,

m(r, ay, )
1 e llle(re)|
T2 Jo, g, [(ak, p(ret))]
0k +Bk )
> r (cos ﬁnk — cos —Wnk)dﬁ +0(1)
27T 0r— B 3 3

2
= (2L2 sin %nk sin gnk) ?ﬂnk +0(1)
2r 27 27

2
> i B | 1
Z 3 G 277k+0() 97“77k+0( )s

since sinz > (2/m)x for 0 < z < (7/2). [
Combining Propositions 5 and 8, we have the

following
Theorem 1.
(1) o(ax,») =
Proof.

(I) ¢ is of order 1 mean type.
(2/9)ni (k=1,2,3,...).
(I) From Propositions 5 and 8 we have

2
§m§ +0(1) <T(r,p) <r+0(1).

(IT) From Propositions 5 and 8 we have

S(ak, p) = “Fii‘.}fW > %ni-
[]
Remark. Let ¢, Y = {ax} and n; etc. be
those given in this section and for any positive in-
teger p put P(z) = zP.
A. Put poP = [p10P,...,pnt1 0 P]. Then,
we obtain the following theorem from Theorem 1 and
Lemma 4.

Theorem 2. (I) ¢ o P is of order p mean

type; (1) S(ak, oo P) > (2/9m (k=1,2,3,...).
B. Put
Yi=YU{b,=(m+1a|1<m<N—n},

where N is a positive integer larger than n. Then, Y;
is in N-subgeneral position but not in N’-subgeneral
position for any positive integer N’ < N. It is easy
to see the following

Corollary 1.
have

For our ¢ o P given in A we

2
S(ay,po P) > 57}2 (k=1,2,3,...)
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and

2
5(b7ru9pop)2§77% (mzl,...7N—n),

C. Asin the case of meromorphic function ([4],
p.98), we have the following

Corollary 2. Forany 0 < e < 1/3, there exist
a holomorphic curve @ o P of order p mean type and
{ar} (k=1,2,...) in general position satisfying

> 1/3—e __
Zk:l 5(a'k‘7§00P) = 0.

Taking the result of Weitsman ([7]) and this
corollary into consideration, we would like to know
whether the inequality

D ey 0@ )P <00

holds or not when the (lower) order of f is finite.
Added in proof. After our original submission,

we found three papers: [9, 10] and [11] relating to

our paper. [10] and [11] give holomorphic curves with

(19)

(20)

an infinite number of deficiencies, which are different
from ours. Those in [10] satisfy (19). (20) is given in
[9] as an open problem.
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