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Abstract. Here we extend the star products by means of complex symmetric 
matrices. In this way we obtain a family of star products. Next we consider 
the star exponentials with respect to these star products, and finally we obtain 
several interesting identities.

1. Introduction

In order to express the elements in Weyl algebra, we need to fix the ordering of 
the generators in monomials because of their non-commutativity. The ordering 
yields a linear isomorphism between the Weyl algebra and the space of all complex 
polynomials and the isomorphism naturally induces an associative product in the 
space of polynomials. This product is called a star product. For example, the 
normal ordering induces normal product, anti-normal ordering induces the anti
normal product and the Weyl ordering yields the Moyal product, respectively.
The so obtained star product algebra is isomorphic to the Weyl algebra, and then 
these are mutually isomorphic (see for example Omori-Maeda-Miyazaki-Yoshioka 
[1]). As an extension of these star products, Omori-Maeda-Miyazaki-Yoshioka [2] 
introduced a family of star products parameterized by the space of all complex 
symmetric matrices. Then a geometric picture is given for the family parameterized 
by the space of complex matrices. The family forms an algebraic bundle over the 
space of all complex symmetric matrices.
When one has to exponentiate elements in the star product algebra, one needs to 
deal with the infinite sum of the power series with respect to the Plank constant. 
Then, in order to discuss the convergence of these series it is necessary to intro
duce a topology and to take the completion of the star product algebra. A typical
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topology is a formal power series topology. Under this topology, the star prod
uct is well-defined as a formal power series in Plank constant with coefficients of 
smooth functions. Hence one can exponentiate any element of the star product al
gebra. Also, under this topology, it is proved that star products can be considered 
on any symplectic manifold (see [3] and [4]), and further on any Poisson manifold

On the other hand, in [6], a different topology is proposed. This permits to deal 
with the Plank constant as a number, not as a formal parameter. Families of semi
norms and their topologies are introduced into the space of complex polynomials. 
Taking the completion, we obtain a family of Fréchet spaces consisting of holo- 
morphic functions. It is shown that the star products are well-defined for certain 
classes of these topological spaces and each of them becomes a Fréchet topologi
cal algebra. In these spaces, star exponentials are investigated for the elements of 
the algebra, especially for the linear elements and quadratic elements, by means of 
geometric methods.
In this paper, a survey of these topological spaces and some main results concern
ing the star exponentials together with some concrete examples is presented. The 
paper is organized as follows. First we explain the general setting by introduc
ing the concept of g-number functions. Then we consider the examples of star 
exponential and its application.
This paper is based mainly on the talk given by the second author at Conference 
on Geometry, Integrability and Quantization in Varna 2009.

2. A Family of Star Products

In this section, we introduce a family of star products parameterized by the space 
of all complex symmetric matrices. Using the intertwiners, we give a geometric 
picture for the family of star products.

2.1. Star Products

For simplicity, we consider star products of two variables («i, «2)- The general 
case for 2m  variables («i, «2, • • • , «2m) is similar.
Let us fix the skew symmetric matrix

(cf. [5]).

(1)

For an arbitrary complex symmetric matrix K  e <S<c(2) we put
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and consider a bi-derivation acting on the pair p i(« i, «2), ^2(^1 , «2) in the space 
V(C2) of the complex polynomials by the formula

Pi
2

x kidUkPidUlP2• (2)
k, l= 1

Now we define a star product *k  on the space of complex polynomials p i(« i, « 2), 
p2(u1, u2) by

Pi *K P2
(3)

Proposition 1. For an arbitrary complex symmetric matrix K  6 <S<c(2) the star 
product *k  is associative on the space of all complex polynomials P (C 2).

We remark here that the definition of star products *K is an extension of star prod
ucts given by standard ordering problems. For example, if we put K  = 0, then the

product becomes the Moyal product. Similarly, for K  = ( ^ ^ J we obtain the

normal product and for K 0 -1
- 1  0 the anti-normal product.

These are products on polynomials and the so obtained algebras are all isomorphic 
to the Weyl algebra. For an arbitrary K  6 <S<c(2), the product *K satisfies the 
canonical commutation relations

[■uk, n]*K =  uk *K ui -  ui *K uk =  ihÔM, k, l = 1,2 (4)

and hence it follows that all algebras (V(C2), *k ) are isomorphic to the Weyl 
algebra W2 with two generators «i, «2- Actually, we have algebra isomorphisms 
/j52 between any two of these algebras (^ (C 2), *k1 ), (V(C2),*k 2)- The algebra 
isomorphism (intertwiners)

1% : (P(£ 2),*Kl) ^  (V(C2),*K2) (5)
are explicitly given by

^ ( P )  = exP (  “  K ^ 92)  P (6)

where
2

(&'2 -  Ki )d2 A 'l J t A A - (7)
kl= 1

We have the relations
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Proposition 2. i) 1 ^  1 ^

By differentiating the intertwiner with respect to K,  we obtain an infinitesimal 
intertwiner at K

v«(p) _ d jK+tK
-  dt LK (P)\t=0 = (8)

where
2

K d 2p  =  K i jd id jp .  
id

Then the infinitesimal intertwiner satisfies

V«(pi *k p2) =  VK(pi) *K P2 +  PI *K v«(p2) (9)

for anyp i(« i,« 2),P2(Mi,M2) e V(C2).

3. Q-number Polynomials

In the star product algebras {(P(C2), *k )}KGSc(2y  ^ e  algebras {V{C2) ,* ^ )
and (P(C2), *k 2) mutually isomorphic by the intertwiner /j52 and the elements
Pi E (V(C2),*Kl) andp2 E (V(C2),*k 2) are identified when

P2 = Ik *(p i )- (10)

A naturally geometric picture follows for the family of just defined star product 
algebras {(P(C2), *k ) }KeSc 2̂)- To describe it, we introduce an algebra bundle
over <S<c(2) whose fibres consist of the Weyl algebra in the following way.

1. Algebra bundle. We consider the trivial bundle

Tr : P = V(C2) x <S<c(2) -a 6c (2) (11)

whose fibre over K  E 6<c(2) consists of the star product algebra

7T-1(if) =  (P(C2),*K) (12)

2. Flat connection and parallel translation. On this bundle, we regard theIF
infinitesimal intertwiner V as a flat connection and the intertwiner IK 2 as 
its parallel translation.
We consider a section p E T(P) of this bundle satisfying

p(K2) = i g W K i ) ) .  (13)

This means that p is parallel

y r.p(K) = o. (14)
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3. q-numberpolynomial
We denote by P(P) the space of all parallel sections, and call an element 
p € V(F) q-number polynomial.
Due to the identities /J^3 /J 2̂ =  / j 3̂ and (J^ 2)- 1  =  the intertwiners 
naturally induce the star product * on P(P). Then the algebra (P(P), *) is 
regarded as a geometric realization of the Weyl algebra.

4. q-number Functions

Here we introduce a locally convex topology into the star product algebras by 
means of a system of semi-norms.
Then we take the completion of the algebras and consider the star exponentials.

4.1. Topology

We introduce a topology into V(C2) by a system of semi-norms in the following 
way. Let p be a positive number. For every s > 0 we define a semi-norm in the 
space of polynomials by

\p\s = sup \p(u1,u2) \exp(- s \u\p) . (15)
«ec2

Then the system of semi-norms {| * |s} s>0 defines a locally convex topology Tp on
V(C2).

4.2. Fréchet Space £p(£2)

Definition 1. We take the completion of V(C2) with respect to the topology Tp, 
we obtain a Fréchet space £p(C2).

Proposition 3. For a positive number p, the Fréchet space £p consists of entire 
functions on the complex plane C2 with finite semi-norm for every s > 0, namely

£P(C2) = { /  e W C 2) ; l/l , < +oo, for all s > 0} . (16)

Continuity for the case 0 < P < 2.
As to the continuity of star products and intertwiners, the Fréchet space £p(C2), 
0 < p < 2 is very good, namely, we have the following

Theorem 1. On £p(C2), 0 < p < 2 every product *k  is continuous, and every 
intertwiner J^ 2 : (£p(C2), *k Ù (£p(C2), *k 2) is continuous.

Continuity as a bimodule for the case p > 2.
As to the spaces £p(C2) for p > 2, the situation is no so good, but still we have the 
following.
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Theorem 2. If p > 2, take p' > 0 such that

then every star product *k  defines a continuous bilinear product

* K  : £„(C2) X £„,(C2) -> £„(€2), éy(C 2) X £„(C2) -> £„(€2).

This means that (£p(C2), * k )  is a continuous ^ /(C 2)-bimodule.

4.3. g-number Functions

The case 0 < p < 2.
Due to the previous theorem, we can introduce a similar concept as g-number poly
nomials into the Fréchet spaces. Namely, the star product *k  is well defined on 
Ep{C2) and then we can consider the trivial bundle

ir :Ep = £p(C2) x *SC(2) Sc (2) (17)

with fibre over the point K  6 <S<c(2) consisting of

jr-1(K) = (£p(C2),*K). (18)

The intertwiners I ^ 2 are well defined for any K i ,  K 2 é 5c {2) and then the bundle
Ep has a flat connection V and the parallel translation is the intertwiner.
The space of flat sections of the bundle denoted by T p is naturally equipped with 
the star product * and can be regarded as a completion of the Weyl algebra W2. 
Remark to the case p > 2.
For the case p > 2, it is not clear at present whether the intertwiners are well- 
defined and whether the product are well defined. However the flat connection 
V is still well defined on n  : E„ = £„(C2) x 5 C(2) -> SC(2), so we can define a 
space T p of all parallel sections of this bundle even for p > 2.
For p > 2, we are trying to extend the product *k  and also the intertwiners I ^  
by means of some regularizations, for example, Borel-Laplace transform, or finite 
part regularization. We hope to construct such a concept in the near future.

5. Star Exponential

The space of all g-number functions T p is a complete topological algebra for all 
p, 0 < p < 2 (even for p > 2 under some regularization). We can consider 
exponential element

n
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in this algebra.
For a g-number polynomial H  e V (IP), we define the star exponential exp* t(H/ih)  
by the differential equation

d / H \  H  ( H \  ( H \  .
d t exp* U if t  = i s * e x M U  ’ exp*‘ U  ^ ° = i - (zo)

Remark 1. We set the Fréchet space

£P+(C2) = n A>p£A(C2) (21)
and we denote by € p+ the corresponding bundle and by T p+ the space of the flat 
sections of this bundle.

When H  E P(P) is a linear element, then exp* t ( |Q  belongs to the good space 
•F l+ (C  T 2).
On the other hand, the most interesting case is provided by the quadratic form 
H  E V(F). In this case we can solve the differential equation explicitly, but the 
star exponential belongs to the space J 2+, which is difficult to treat at present. 
Although general theory related to the space T 2+ is not yet established, we present 
a concrete example of the star exponential of the quadratic forms and its applica
tion.

6. Examples

Let us vary the parameter K  E <S<c(2) as for some K  we can obtain interesting 
identities in the algebra of *K product.
The linear case
Here we consider a liner g-number polynomial. It can be written in a general form 
as

H  = a\u  +  d2V = {a, u), a±, <22 E C.
Star exponential in H  belongs to the space of g-number functions J-\+. The star 
exponential exp* t ( |0  at K,  which is denoted by exp*^ t ( |Q , is explicitly given 
by the formula

exP*^  ̂ =  exp ^  {aK, a) exp ^  (a, rx).

Hence, if the real part satisfies an inequality like
^ m ( a K,a)  < 0 (22)

j .2
and the term exp ^  {aK, a) is rapidly decreasing with respect to t ,  we can consider 
the integral

e-6* exp*^ t ( z + ^ ) d tr
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Then we can define the star gamma function by
f

\ ( z )  =  /i/  — i

H'e exp / I c ----- Id  t.
\  i h j

(23)

This is evaluated at every K  and the value T*K(z) of the star gamma function at 
K  is given by the integral, where K  satisfies the condition (22).
We have the identity for K  satisfying (22)

r  * k ( z  +  1 )
H

z +  -i h *K

Quadratic case
In this paragraph, we construct a Clifford algebra by means of the star exponential 
e x p f o r  certain K. In what follows, we describe a rough sketch of the 
construction.
First we consider a generic point in <S<c(2), i.e.,

* = ( «  r ) 6 * ® -
Next in the star product *K algebra, we write the generator u =  u \ , v = «2 satis
fying

[«,«]**. =
Then the star exponential of H  =  2u * v is explicitly given at a general point K  as

exP*^ t
2 u * v 

ih

where

2e' e ' - e - 1
exp

s/D ihD

iA
l<

e- *)r/

((e‘ — e t )ru2 + 2A uv +  (e* — e *)r/v2) 

A = e* + e_t — K(et — e_t). (24)

In the sequel, we assume t ’ 0, that is, we take the point

K  = 0 K 
K T

(25)

We have a limit
( x'fl 3k 'iJ

in

which we call a vacuum.
Then we have

K
exp

ih(l +  k)
(2 uv

Lemma 1. i) zu00 *K zu00 = zu00, ii) v *K zu00 = *K u =  0.
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Putting t =  7ri, we have the identity

( 2  u *  v
exp* - 7ri { ~Tr,T

l . (26)

Using
V *K (u *K v )  =  (v  *K u ) * K v = ( u * K v  +  i h) *K u 

we see that the star exponential satisfies

v  *K exp*^ t
2 u * v

i h exP* ^ t
2v * u'

, ---------  J *  7;
*K \  ih )  K

exp* ^ t
2u * v  +  2ifr' 

ih
2 f ,*K v  =  e exp t

2u * v \
*K " [  ih )  *K v ‘

Then the integral |  exp*^ t ( ^ j^ )d t  converges and we can define

I f 0 ( 2  v * u \  -,
ex P*^ t  1 — \ d t = ( v  *K u) +

and
V =  U * K [ V * K u ) +

Then we have

Lemma 2. The element v is the right inverse of v satisfying
° -l ° -,V * K V  =  1 ,  V * K V  =  1 — G7q q .

Now we fix an integer l. By putting

t  — 11

we obtain 2l roots of the unity

7ri ( 2 u * v''

7T1

¥

0  ; =  exp
** 2l \  ih

zui =  exp 2
7T1

such that

Finally we state

Lemma 3. We have the following relation

Ok  , ,   , n, m    __,km n,m  ,   , n,m
l * K  *  K  ^ * K  m 0 0  *  K  * ,  *  I, *  K  ^ 0 0  * K

(27)

(28)

(29)
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Now we take appropriate complex numbers ag, ai, • * * , a2«_i so that the element

2l — l
E  = £  akn i K

k = 0
obeys to the identities

E *K < K *K ^oo <
_  f * *  ^oo * *  v™K •••()< m < 21- 1 -  1

\  0 . . .2 1“ 1 < m  < 2l -  1.
We see that this is equivalent to

2l- l { !• * * 0 < m < 2 i 1 — 1
£  W "  = -
k=0 I - ■21- 1 < m  < 2l -  1

The complex numbers ag, a%, • • • , a2i- i  Me uniquely determined by these equa
tions. Then we have

Lemma 4. The element E  satisfies

E  * E  =  1K

and the element F  =  1 — E  satisfies

F *K F  =  1, E *K F  =  F *K E  = 0.

Further we have

Lemma 5. E *K (v) fK 1 =  1 F,
where

2i-i
*K

(v) f  1 = V *K ■ ■ ■ *K V and (v)
K

21- 1

ni — 1 o o= ?! * . . .  * 'll
K v v

2i-i

Finally we can set

£ = E *K (v) %  5 V = (v)iK *K F.

Then we have

Theorem 3. The elements £ and 77 of the *K product algebra satisfies the identities

£ * K £ =  T] *K Tj =  0

i * K  r l  +  i * K  V  =  l -
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