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Abstract. An interesting class of axially symmetric surfaces, which gener
alizes Delaunay’s unduloids and provides solutions of the shape equation is 
described in explicit parametric form. This class provide the first analytical 
examples of surfaces with periodic curvatures studied by K. Kenmotsu and 
leads to some unexpected relationships among Jacobian elliptic functions and 
their integrals.

1. Introduction

It is well-known that in aqueous solution, amphiphilic molecules (e.g., phospho
lipids) form spontaneously bilayers so that the hydrophilic heads of these molecules 
are located in both outer sides of the bilayer which are in contact with the liquid, 
while their hydrophobic tails remain at the interior. In many cases, the bilayer form 
a closed membrane, which is called a vesicle. Vesicles constitute well-defined and 
sufficiently simple model systems for studying basic physical properties of the 
more complex biological cells.
In 1973, Helfrich [3] had proposed the so-called spontaneous curvature model 
according to which the equilibrium shapes of a lipid vesicle are determined by the 
extremals of the curvature (shape) energy
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under the constraints of fixed total enclosed volume V  and area A  of its middle sur
face S.  In the above equation H  and K  denote the mean, respectively the Gaussian 
curvature of the surface S  while Ih, kc and Uq are real constants representing the 
spontaneous curvature, bending and Gaussian rigidity of the membrane. Using 
two Lagrange multipliers A and p, this yields the functional

The Lagrangian multipliers A and p are interpreted as tensile stress and pressure 
difference between the outer and inner media.
The Euler-Lagrange equation corresponding to the functional T  reads

where A is the Laplace-Beltrami operator on the surface S.  Equation (1), that 
has been derived by Ou-Yang and Helfrich [19], is often referred to as the general 
membrane shape equation. Its derivation from geometrical standpoint can be found 
in [26].
In parallel two other curvature models have been developed. The first of them is 
the so-called bilayer-couple model suggested by Svetina and Zeks in [25] on the 
ground of the bilayer-couple hypothesis [23] and the related work [24]. The second 
one is known as the area-difference-elasticity model [1,12,31]. For the purposes 
of the present paper, however, it is important to underline that all the curvature 
models mentioned above lead to the same set of stationary shapes, determined lo
cally by the equation (1) given above, since they differ only by global energy terms 
(see [10,12,23]). Of course, the meaning of the constants involved in this equa
tion vary within different models. For more than three decades, the study of the 
equilibrium shapes of the vesicles has attracted much attention, nevertheless only 
a few analytic solutions to the shape equation (1) have been reported up to now. 
These are solutions determining: spheres and circular cylinders [19], Clifford tori 
[5,20,21], Delaunay surfaces [13,16], circular biconcave discoids [15,17], nodoid- 
like and unduloidlike shapes [16], some types of Willmore and constant squared 
mean curvature surfaces [9,29,32] as well as cylindrical surfaces [22,27]. It should 
be noted, however, that, leaving aside the first two types of the aforementioned sur
faces whose parametric equations are well known, explicit parametrizations of the 
rest ones are missing except for the surfaces of Delaunay [13,14] and the general
ized cylindrical surfaces [27]. Strangely enough, the rotational ellipsoids furnish 
only approximate solutions to the shape equation [11].
From mathematical point of view the main difficulty in solving (1) is that it is a 
nonlinear fourth order partial differential equation for the position vector x run
ning on the surface S.  A fortunate circumstance is that this differential equation
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can be rewritten in the form of a system of four differential equations of second 
order. One, namely (1) for the mean curvature H  and three others, namely

Ax =  2 H n  (2)

for the components of the position vector x. Here n stands for the unit normal 
vector of S  and the formal proof of (2) can be found either in [18] or [22],

The aim of this paper is to present explicit parametric equations describing the 
axisymmetric surfaces corresponding to the solutions of the shape equation (1) 
discovered by Naito et al. [16]. These surfaces provide the first analytical examples 
of surfaces with periodic curvatures studied by Kenmotsu [8]. Along this way, we 
have found also some unexpected relationships among Jacobian elliptic functions 
and their integrals.

2. Shape Equation for Axisymmetric Vesicles

The axisymmetric vesicles will be thought of as a surface of revolution obtained 
by revolving around the z-axis its profile curve T laying in the X O Z - plane. If s 
denotes the arclength along T and denotes the slope of the tangent to the curve 
with respect to the O X  axis measured counterclockwise, one has the following

d z

Figure 1 : Geometry of the profile curve.

geometrical relations

d 'ip(s)
= k(s ),

d.r
ds

=  cos'^(s),
dz
ds

=  sin ip(s)
ds ( 3)
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which can be deduced either from Fig. 1 or the Frenet-Serret equations 

dx(s) x dT  „  dN
ds

s, dT
(S)’ d7

kN,
ds

- kT (4)

in which T  and N  are respectively the tangent and the normal vector to the curve 
and k ( s ) is its curvature.
One can represent the profile curve T also by the graph (x, z ( x )) of the function 
z =  z ( x ) (see Fig. 1) and in the latter case the general shape equation (1) reduces 
to the following nonlinear third-order ordinary differential equation [5]

cos3 ip
d3 ip 
dx3

o d?ip dip /  2 1 24 sin ip cos ip— ^ -------cos ip ( sin ip ------cos ip
dx£ dx  \  2

' ( h p y
,d  x )

7 sin ip cos2 ip {  dip '
V dx2x

2 cos3 ip d? ip 
dx2x

+

+

A l i2 21i sin ip sin2 ip — 2 cos2 ip \  dip
+  — --------------------------------------------------- ----------------------- ) COS ip -

k X 2x2 dx
' A l i 2 sin2 ip +  2 cos2 ip \  sin ip p
kr 2 2x2 / x kr

(5)

where ip is again the angle between the X -axis and T  but this time considered as 
a function of x. The two last equations in (3) imply the relation

dz
—  =  lane-.
dx (6)

3. Exact Solutions

The general shape equation is a nonlinear fourth order partial differential equation 
which theory is far from being complete in any sense. As we have mentioned 
before, there are only a few explicit solutions which were found by relying on the 
axial symmetry that comprise spheres, circular cylinders [19], Clifford tori [5,20, 
21], the rest of Delaunay constant mean curvature surfaces [13,16], nodoidlike and 
unduloidlike shapes [16,33], and most recently the generalized cylindrical surfaces 
[22,27]. Even for this short list explicit parametric equations are available only for 
the tori [5], Delaunay [13,14] and cylindrical surfaces [27].
Many years ago, Kenmotsu [7] had shown that surfaces of a given mean curvature 
in R3 are defined essentially by their Gauss map (see also [4]). Later on Eells [2] 
pointed out that the Gauss map for Delaunay surfaces is given by the formula

• , csm ;/• =  ax H----,
x

x ^ O , a, c G R. (7)
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Finally, in 1995, Naito et al. [16] discovered (see also [22]) that (7) which is 
solution of the shape equation (5) describing axially symmetric constant mean cur
vature surfaces could be generalized to the form

sin i p  =  £  +   -----1— ( s 2 +  2) Jur, e G R (8)
li.n 4 '

which corresponds to vesicles with spontaneous curvature (lh ^  0) subjected to 
nonzero pressure (p ^  0), and provided that the pressure p and the tensile stress A 
are given by the expressions

A lh2 (e2 +  l) 
kc =  2

p _  Ih3 (e2 +  2)2
kc 8

For the foregoing class of solutions the equation (6) reduces to

d z
dx

l
liæ flh (e2 +  2) x

l
lax |lh  {e2

(9)
2 ) x

and hence the profile curve of such an axisymmetric vesicle can be expressed as 
the graph (x, z (x )) of the function z(x) given by the following elliptic integral

z(x)
l

fax 2) li;r
dx.

l
h x 2) Ihx)'

The principle goal of the present paper is to find out parameterizations of the above- 
mentioned contours that are free of the obvious limitations associated with the 
graph presentations.

4. Parametric Equations

In terms of an appropriate new variable u, the equation (9) can be rewritten in the
form

in which

P{ x

Q(x)

dx
du
dz
du

x

x

1
ß
1

yJ-P{x)Q{x)

(.P ( x ) +  Q(x))2ß

4 (e — 1) 
(e2 +  2) 1h 
4 ( e + l )

x

x

(e2 +  2) 1h" 
4

(e2 +  2) 1h (e2 +  2) lh  ̂
and where the real parameter // will be fixed later on.

( 10)

( 1 1 )

( 1 2 )

(13)
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and therefore, for each allowable value of the parameter s, i.e., |s| >  1/2, only two 
of them are real. These are a  and ß ^  a  for e < —1/2 and, alternatively, 7  and 
5 7̂  7 for e > 1/2. In the first case we will have 0 < a < x  < ß  when Ih > 0, 
and in the second case x  will be strictly positive i.e., 0 < 7 < x  < S iff Ih < 0. 
Now, using the standard procedure for handling elliptic integrals (see [30], § 22.7), 
one can express the solution x(u)  of equation (10) in the form (see also [28])

2 sign (s) ^  2r
l i v 's 2 +  2 \  t  +  cn (u, k)

(14)

where

k

Actually, the choice of u as uniformization variable fixes also the value of the free 
parameter /i, i.e.,

4
'1 _ 1 ,(2  +  £2)3/ i '

Consequently, using expressions (12) and (13), one can write down the solution 
z(u) of equation (11) in the form

zsu
1
ß

4 ex(u)
X  ( it

(s2 +  2) Ih (s2 +  2) Ih2/  
and following this route in [28] we have found that

sn(it, k) dn(it, k) u

dit

zsu ß E( am [u k),k)
t  +  cn(u, k)

(15)

(16)

The meaning of the functions that appear in the above equation is as follows. 
E ( - , •) denotes the incomplete elliptic integral of the second kind which depends 
on its argument in the first slot and the so called elliptic modulus in the second slot. 
The Jacobian amplitude function am (-, •) and Jacobian elliptic functions sn (-, •), 
cn(-, •) and dn(-, •) depend in the same manner. More details on the subject of 
elliptic integrals and functions can be found in [6].
In what follows we will present an alternative parameterization of Delaunay like 
surfaces which we hope will be of some help in their studies from the geometrical
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viewpoint.
We start with rewriting (14) in the form

x{u)
2 sign (s) ( l  -  \e\ -  V 2kl -  i )  d n ( û, m)

where

ü = J u — Kim) ,  m  
2 K{k)  1 h 1  —  |s| —  \ f 2 \ s \  —  1

(17)

(18)

and K(-) denotes the complete elliptic integral of the first kind evaluated for the 
respective elliptic modulus.

Now, the remaining integrations in (15) are straightforward provided one takes into 
account that we have the formulas

J dn(t, k)dt. = am(t, k ), dn2(t, k)dt  =  £;),£;). (19)

Actually, the integration produces the primitive

C H
(1 _  |£| _  v/2|e-| -  l ) s

E(  am(û, m) ,m)

n

(20)

anil u ,m)  — r  {ani^n, m ), m

Figure 2: Open parts of the bulb (left) and the neck (right) segments of the periodic 
surface of revolution obtained via parametric equations (17) and (21) with e =
1.3542 and l i =  -3.335623.
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in which the integration constant is omitted because if we want the sought-after 
curve to start from the X  axis for u =  0, then obviously we have to take

z(u) = C(u) -  C(0). (21)

Thus, for each pair of the allowed values of the parameters e and Ih, the expressions 
in (17) and (21) provide the parametric equations of the profile curves of our axially 
symmetric unduloid-like surfaces corresponding to the respective solutions of the 
membrane shape equation (5) of the form (8) (see Fig.2).
Before closing this paper, we will make the following comments. The first one is 
that if we equate the right hand sides of the equations (14) and (17), respectively
(16) and (21) we will face quite nontrivial relationships among elliptic functions 
and integrals. It is hardly to believe that they could be derived in purely analytic 
way and probably should be considered just as glimpses of geometry.
The second one concerns the studies of the surfaces of revolution with periodic 
mean curvature undertaken by Kenmotsu [8] who had presented numerical exam
ples of such surfaces. According to the authors knowledge the surfaces presented 
here provide the first examples from this class in analytical form.
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