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A GEOMETRIC MODEL FOR EXTENDED PARTICLES
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Abstract, Here we combine die ideas of a quantum functional theory in­
tended to describe intrinsically extended particles with those of a geometro- 
stochastic one describing stochastically extended particles. The main ingre­
dients of tile former are a physical wave u  replacing the point x  and a func­
tional wave X\u,  t} replacing die probability wave function of the conven­
tional quantum theory. The latter introduces a proper wave function account­
ing for die unavoidable errors in die measurement of continuous observable 
such as die position and momentum.

1. Introduction

la  the aiaeieea fifties of previous cealury, Deslouches [1,2] developed his func­
tional quantum theory as a generalization of de Broglie’s theory. His basic idea 
was that elementary particles need not be poinllike. Being extended and non rigid 
is a belter conception. Rather than conceiving the panicle as a bulk of fluid, we 
have supposed lhal il is composed of poinllike quantum modes. This enabled the 
construction of our Geometro-Differential Model (G-D-M) for extended parti­
cles and its quantization by a method of induced representation [3,4,9,10], The 
geometric structure have been drawn from a recent Geometro-Stochastic Theory 
(G-S-T) which seems to be a candidate for the unification of quantum mechanics 
and general relativity devoid of many of the inconsistencies of both theories [6-8]. 
Il deals with an extension of particles attributed to the impossibility of sharply 
measuring a position (or momentum) of a particle. Il is a stochastic extension. The 
aim of the present work is to describe a scheme of the extended particles which 
incorporate both the intrinsic and stochastic extensions. To achieve this, we shall 
combine our G-D-M with the G-S-T.
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2. Functional Quantum Theory

Inconsistencies of quantum mechanics led some researchers to the conclusion that 
their cause lies in the pointlike conception particles. So, let us begin with the 
quantum functional theory which is one of the oldest quantum theories advocating 
an extension for extended particles. Its main feature is that a physical system is 
not really distinguishable from the remaining part of the Universe. Representing 
the action of the latter on the system is an approximation. A better approximation 
can be arrived at, when the exterior can influence the intrinsic characteristics of 
the system. As a consequence, an elementary particle may be represented by a 
function (the physical wave) u describing these characteristics and, as such, it must 
be conceived as a non rigid extended body.
To understand the physical wave, recall that in classical mechanics a point particle 
is represented by a function x(t) e  R3 of time giving its successive positions. 
In quantum mechanics, it is represented by a variable x  as the argument of the 
wave function. In the functional theory, this point is replaced by the physical wave 
u depending on a spatiotemporal variable £ having no physical meaning. The 
position x  becomes a functional F[u] generalizing de Broglie’s singularity.
The abstract function u can be treated by associating a specific physical model such 
as a bulk of fluid. Then, it obeys an ordinary quantum mechanical wave equation 
with a non linear quantum potential Q [1].
Since the conventional point x  is replaced by a function u, the conventional wave 
function U(x, t) has to be replaced by a functional X

X[u,t] (1)

depending on u. This functional yields probabilities and obeys a spectral decom­
position

X  [u, t} =  Ej at (t ) X t [«]. (2)

In the pointlike approximation, it should become a wave function $  (x, t)

X[u,t] -» O I[F[u],t] =  $ (x ,f) (3)

that yields previsions on the point x  and is the analogue of the conventional wave 
function U(x,f).

3. Geometro-Differential Model

First, we adopt the most important physical foundations of the functional theory. 
Namely, the particle is extended and non rigid. Its intrinsic characteristics can be 
influenced by the exterior. However, we change the notation u to $  and choose 
a different physical model to treat this physical wave. The functional is a bilocal
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field with an external and an internal part. It may be of a product form but this is 
not the general case

X [$] (x ,Q  = = ‘if’(x)'$x(Q- (4)

The points x  =  (a:0, x) belong to an external Minkowski space M  ~  R4 and the 
points £ belong to an internal Minkowski space-time M 1.
The intuitive image of the extended particle is that the internal part corresponds 
to an internal quantum mode described by the physical wave and localized in the 
internal space-time of the particle. The particle as a whole is considered as an 
external mode localized in the external space-time. The quantization of both modes 
proceeds with the method of induced representation [5], We shall present the latter 
in connection with a pointlike relativistic particle. For this purpose, we consider 
the Poincaré group P  which transforms points of the Minkowski space M  through 
translations a and Lorentz matrices I

x  =  g(a, l) = lx +  a. (5)

The group law shows a semidirect form

g(a, l)g(a', l') = g (a +  la', ll'). (6)

The Lorentz transformations I =  rvj_, are composed of ordinary rotations r  and 
velocity boosts vj_, and leave invariant the Minkowski scalar product r\ijXLxK The 
quotient of this group with respect to the Lorentz subgroup yields the Minkowski 
space

M  = P /L .  (7)

The reducible configuration induced representation U(P)  is obtained from the ir­
reducible representation D(L)  of the Lorentz subgroup

U(P) = D(L)  T P. (8)

The action on an element é  of the Hilbert space H

[U(a, l)ip\(x) = D(l)ip(l~1(x — a)) (9)

shows that D(l) mixes the spin components of the wave function. A parallel con­
struction can be carried out when the subgroup is a semi-direct product of transla­
tions and rotations

H  = [T)R. (10)
The momentum space is a homogeneous space with respect to the subgroup H

C P /H .  (11)

A unitary and irreducible representation of H  is

Ams(ar) =  exp(ima.eo)As(r), eg = (1 ,0 ,0 ,0). (12)
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It contains the well known representation A s of rotations of spin s and an expo­
nential of the time component of the translation vector multiplied by the mass m. 
The induced momentum representation

Üms(P) = Ams(H)  T P  (13)

[&ms(a, l ) ^ ms](v) = exp(ima.v)As[(l, r 1u)Ä]^ms( r 1u) (14)

obtained in this way is irreducible and labeled with the mass m  and spin s of the 
particle. The representation of rotations contains a Wigner rotation (U  M  r  and 
mixes spin components of <pms e  H ms.
The reducibility of the configurational representation entails that the corresponding 
localized states f ( x )  may be virtual. In contrast, the momentum states (pms(v) can 
be interpreted as real or material states. Hence, the intertwining operator K ms pro­
jecting the configurational representation onto the momentum representation can 
be interpreted as a process of materialization of the localized state. The range of 
the inverse intertwining operator Ims is an irreducible component of the configu­
rational representation and corresponds to a process of localization of the material 
state. The obtained states are both material and localized.
Now, we just give the integral forms of the intertwining operators corresponding 
to the processes of materialization and localization where the plus and minus signs 
refer to particles and antiparticles, respectively.
Localization { i f  is a constant matrix and dO4 (v) =  d3v/n°):

I t s u ms =  G i t s (15)

(16)

=  Jc+ d ü f  (v) exp[^(imv.x')}D(vL) l f ip ms(v).

Materialization { K f  is a constant matrix and dfi(x) =  d4rc):

K t sU(P) = Ums( P ) K t s (17)

(pms^ ( v )  = ( K t sip)(v)
(IB)

dfi(x) exp[±(i mv ,x' )\Kf D{v j ^ f b i x ) .

The composition of a materialization followed by a localization yields a propaga­
tion of localized states

n f s =  l f sK f s , r * ± ( x ’) =  (H i sé ) ( x ')  =  /  d ß { x ) I i t s { x ' , x ) i { x ) .  (19)
JM
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The integral form of the propagator is obtained from the integral forms of I ^ s and
K t s

n ^ s(æ?,æ) =  , 3 f  d ü f  (v) exp[^imv.(x -  x ) \S (vL). (20)
2(2tr)d Jc+

The spin matrix S ( vl) =  D i y i j l f K f D i y ^ 1) equals one for the scalar particles 
and the propagator is identified with the Dyson function. The causal propagator is 
then obtained in the usual way by Hcms(x) =  9(x°)Tl'^ns (x) +  0(-a:o)Ilms(a:). 
Returning to our extended particle, recall that it is composed of an external mode 
with mass m  and spin s and an internal mode with mass fi and spin a. This con­
ception can be described by a fiber bundle. The external space-time M  constitutes 
the base manifold and the internal M '  space corresponds to the fiber. States of the 
internal mode belong to the fiber of a Hilbert bundle

E d ( M ,H ,U )  (21)

with the same base, the Hilbert space H  as a total space and the induced represen­
tation U as the structural group. The functional wave is a bilocal field where the 
two modes are quantized with the inducing method

X [$](x ,C ) =  é ( x , 0  =  é ( x ) § x ( 0 .  (22)

In order to apply this method, we can use four fiber bundles exhausting all combi­
nations of configuration and momentum representations for both the external and 
internal modes

E ( M , H , U ) ,  E ßa(M, U,ia) (23)

E ms(C,H,Û) ,  E ^ s( C , H ^ , Ü n .  (24)

All possible intertwining operators give the same results. One way is to achieve 
a complete materialization of a completely localized state E  —» E£fs. Then, a 
complete localization E£fs —» E  leads to the propagator

n ^ ( x ?, £?; X, £) =  n t s ( x ,  x) <g> n ^ c r ,  £). (25)

The latter is a tensor product of the external and internal pointlike propagators (20). 
Interaction is represented by a connection T acting on the internal propagator for 
infinitesimal paths

IT-ras i x n,  C n î ^ n - l )  £ n —l )

=  I l^ s(a:n, x n_i)  ® U f exp J  T(a:) W ^ ( £ n,£n_i).

(26)
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The total propagator is a path integral of infinitesimal propagators

n ^ s(a:,C;a:?,C?)= &n = 1
^ms{x ny in, Xn-U  £n-l) J J  d(r(xn) dp(£n) (27)

JV -1

n = l

where da(xn) and d//(£n) are invariant measures of a space-like slice (foliation) 
of the external space-time and the internal space-time, respectively.

4. Geometro-Stochastic Theory

Our model of extended particles has many mathematical similarities with a geomet­
ro-stochastic theory but actually it is very different from the physical point of view. 
The G-S-T claims a consistent unification of the quantum theory and general rel­
ativity by analyzing and unifying their most fundamental principles. It is based 
on two components. The stochastic component is related to measurement theoreti­
cal issues dealing with the localization and extension of particles and accounts the 
inaccurate nature of any actual measurement of position and momentum, i.e., an 
irreducible indeterminacy. This implies that all particles have a stochastic exten­
sion accounting for that indeterminacy. Such test particles may play the role of 
quantum micro-detectors. On the other hand, the geometric component is based on 
an operational definition of space-time whereby its classical nature is questioned in 
the quantum realm since the classical test particles serving its definition are absent. 
If they are replaced by stochastic test particles, a notion of local quantum frame 
can be defined and used to construct a quantum space-time as a Hilbert bundle.
Let us begin with the stochastic theory whose interpretations are easier to under­
stand in the non relativistic case. The main idea is that all measuring apparatuses 
are imperfect and plagued with an irreducible indeterminacy that should be con­
sidered in the formalism of a quantum theory. For instance, when a measurement 
of position yields a value x  e  R3 it is interpreted as the real position of the particle 
in conventional quantum mechanics. However, in stochastic quantum mechanics, 
the measurement may yield another value q  e  R3 with a confidence function (or 
probability density) Xq(x )- The corresponding probability for q  to belong to a 
Borel set A is a confidence measure

A stochastic value (q, //q) is the association of an ordinary value q  to its confidence 
measure îq. The configuration and momentum confidence functions

Xq(x ) =  (27r)3|r?(x -  q ) |2 and x p(k) =  (27r)3|?7(k -  p ) |2 (29)

are related to functions fj and rj which can be interpreted as proper state of stochas­
tically extended microdetectors. These functions uniquely determine irreducible 
phase space representations.

(28)
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Transition to the relativistic case can be made by generalizing the Galilei group the­
oretic definitions to the Poincaré group and considering a space-like hypersurface 
E =  a  x V,+ of the relativistic phase space. The space-like hypersurface a  of the 
Minkowski space M  has invariant measure da(q) and V,+ is the mass hyperboloid 
with invariant measure dQ(k) =  d3k/2&°. Note that the induced representation 
method uses the unit mass hyperboloid C f  with dO f (v) =  2dO (v =  kfm) .  We 
have not unified the stochastic and induced representation conventions yet. One 
starts with the proper state vector rj describing a stochastically extended test parti­
cle marking the origin of a quantum Lorentz frame. Translating it with the amount 
q and boosting it to the momentum p yields the proper state vector

rjq,P(k) =  P(q,p)rj}(k) = exp(ik.q)rj(p.k) (30)

of another particle at stochastic position q, having stochastic momentum p =  mv,  
and marking another point of the same quantum frame. Projection of generic state 
vectors é n e  Hv c  L 2(E) on the proper state vectors

ipri(q,p) =  < % i# ) =  f  + % ,p(hW k)  dü(k)  (31)
•J Vrn

defines an irreducible phase space representation. Probabilities are expectation 
values of positive operator valued (POV) measures defined with the proper state 
vectors

P((q,p)  G A) =  {ip\E(A)tp) = f  d'E(q,p)\iprl(q,p)\2 (32)
Ja

E (A )  = [  [j]gtp)dE(q,p)(r]qJ .  (33)
Ja

Here A is a Borel set in E. The invariant measure of E is dE(ç, p) =  da(q) dfl(k). 
The propagators are also defined by means of the proper state vectors

K ( q , p ; q , p )  = (rjgjrjg'^)- (34)

The second component of the geometro-stochastic theory is its fiber bundle geo­
metric structure

E(M ,H g ,U (P ))  (35)

lifting the classical nature of space-time to a quantum one. The stochastic quan­
tum mechanics Hilbert space Hg becomes a fiber over the space-time M  of mean 
locations x. The role of structural group is played by the stochastic phase space 
representation Ug. The main point is that the proper state vectors can be considered 
as a local quantum frame ^

$X = {Vx:{q,p) ; (q,p) e  M  x M 1} (36)
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with no contradiction with the uncertainty principle. Then all interactions, includ­
ing gravity, appear as connections. The above definitions have been oversimplified 
(a rigorous exposition can be found in [7] and [8]).

5. Intrinsically and Stochastically Extended Particles

We have presented two approaches for possible extension of the notion a particle. 
It may be considered as intrinsically extended as in our G-D-M based on the func­
tional theory, or it can be considered as stochastically extended according to the 
G-S-T. We think that the G-D-M can be improved by incorporating the stochastic 
component in it. Recall that our extended particle is composed of two modes. The 
internal mode, being indirectly accessible to measurement, may be considered as 
pointlike. In contrast, the external mode is directly accessible to measurement and 
can be described stochastically. We assume that both modes are scalar particles 
(s = a  =  0) and anti-modes non considered for simplicity.
We can construct four state spaces. First, the space where the external and internal 
modes are both in the momentum representation

L 2(V+ x C f )  = {$&(*; Ç)}, Ü& = Üm(a, A) <g> W l { d y A?). (37)

These states are completely real with momenta k  and Ç belonging to the external 
and internal mass hyperboloids and Cff .  In the other cases,

=  fjP = Uri(a,A) ® Ü,J,(a ,A ' )  (38)

Hr, ® H =  {§p(ç,.p;£)}, Ûr, = Ur, ( a , A ) ® Û ( a , A l) (39)

H v ® ÛÇ = U„(a, A) <g> U H a \A ' )  (40)

the external mode is stochastic. The internal modes are real, localized, and both 
real and localized, respectively. The external representation is stochastic Un, while 
in the internal space we have the momentum U11, the reducible U, and irreducible 
configuration representations U>1, respectively.
The probabilities can consistently be defined in Hr, ® H fl. Wave functions can be 
defined as projections on tensor products of stochastic proper state vector rj with 
the perfectly localized vectors (pç

^ ( ç , p ; 0  =  <%P;çW , l%p;Ç> = I%p) ® l<?Ç>, <<?çl<?Ç'> = C°5(C “  C?)- (41)
The probability that a simultaneous measurement of the stochastic position and 
momentum yield a value (q, p) in A and that the internal momentum Ç be in A ? is 
expressed in the usual way

P*(A  x A')  = f  ^  d E ( q , p ) d ü f ( C W ^ q , p ; 0 \ 2
J A x A '

(42)
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The passage from the momentum-momentum to the stochastic-momentum repre­
sentation can be performed by the stochastic intertwining operator Wn

Wv : L 2(V+ x C f )  -  ® H>\ (43)

Its integral form is concerned with external variables only

% {q,p - ,0  = /  dQ(k)?rqJ k ) % ( k - , 0 .  (44)

Localization can be obtained by the action of an intertwining operator J^ ,+ =  
Wf] ® F1,+ where W.n intertwines the internal momentum and phase space repre­
sentations. The second operator F1,+ is the internal induced representation local­
ization operator

J^’+ : +(q,p-,C) -  % + (g,p;C)
(45)

K +(q ,p ;0  = ^ 7 2  f v+xC+ dfi(fc) dO +(C )exp(-iK 0 % , P( k ) ^ +(k , 0 -

Materialization is the product of the inverse external intertwining operator 
W ~ x with internal materialization K>1

K ^ + : § ( k , C ) ^ ^ +(k,C)
(46)

$'q +( k , 0  =  2^5/2

The propagation is obtained as in the pointlike case. Namely, by composing a 
materialization Kf*,+ followed by a localization Ifq,+. The total propagator is a 
product of the external stochastic propagator and an internal pointlike propagator

K%+{ q ,p , i ; q \ p ' , e )  = K(q,p;q ' , p ) H ,J"'+ (£> £?) • (47)

The quantum space-time structure of the G-S-T may be retained with appropriate
changes in the fibers over the external space-time points

E mi(M, Hr, ® Ü11). (48)

The fiber Hn is now replaced by H n ® H fl since the phase space point (q,p) is 
added to the internal momentum Ç Corresponding by the local quantum frames 
are labeled with these points

=  {r]X;(q,p;0 ; OAK C) ^  S X C f }  (49)

and the structural group

Û% = Ur,(a, A) ® U,l(a!, A?) (50)

is the product of the external phase space and internal induced momentum repre­
sentations.
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6. Conclusion

Our work is based on the idea that an intrinsic extension of particles may be com­
bined with their stochastic extension. This has been achieved by incorporating 
a stochastic component in our geometro-differential model. The stochastic prop­
erties affect the external mode only. The processes of localization, materializa­
tion and propagation have been successfully generalized to this case. Moreover, 
it seems that even the quantum geometric structure can be generalized. The lat­
ter point merits a refinement since the present exposition is rather very sketchy. 
Further investigation in connection with gauge fields is to be considered also.
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