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Abstract, The Manev model and its real form dynamics are known to pos­
sess Ermanno-Bemoulli type invariants similar to die Laplaee-Runge-Lenz 
vector of the Kepler model. Using diese additional invariants, we demon­
strate here diat bodi Manev model and its real Hamiltonian form posses the 
same so(3) or so(2, 1) symmetry algebras (in addition to die angular mo­
mentum algebra) on angular momentum level sets. Thus Kepler and Manev 
models are shown to have identical symmetry algebras and hence sharing 
more features than previously expected.

1. Introduction

Since Kepler and Newton the elliptical trajectories became the new archetype of 
the (bounded) planetary motion and the circular orbit nowadays is viewed upon 
rather as a degenerate ellipse than as an embodiment of perfection. The advent of 
Einstein’s theory did not produce a new archetype of heavenly motions, apart from 
the exceptional case of a collapse into the black holes. Nevertheless, among the 
variety of relativistic effects the perihelion shift of the inner planets and the light 
deflection in a gravity field tire definitely the best recognizable effects in the Solar 
system. Maybe it is lime lo accept a new archetype of heavenly motions: pre- 
cessing ellipse (or more generally, precessing conics). If precessing conics give us
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“the typical” motion of planets it is tempting to ask which central force field pro­
duces them. Surprisingly or not, the answer is: the Manev model -  see equation (1) 
(and [2] for the precise formulation of the statement).

One may easily get the suspicion that Manev problem actually offers a larger nat­
ural family of models with common properties, among which Kepler model is a 
kind of degenerate case (just like the circle is a degenerate case among the conics). 
There are several types of arguments supporting this view:

• First, as we already said, it is a sensible generalization of Newton’s gravita­
tion law

• Second, there are stability arguments as Kepler-type motion is generally not 
preserved by small perturbations and any sort of “real world” interactions 
like Solar pressure, drag, etc., would destroy “fixed ellipse” motion; while 
in the Manev model we have persistent KAM tori and cylinders for a large 
class of even non-Hamiltonian perturbations [16]

• Third, Kepler problem is famous as one of archetypes of superintegrable 
systems -  kind of property which is also assumed to be easily destroyed by 
small perturbations. Recently we reported [15] that Manev model has an 
additional independent globally defined constant of motion, albeit not for 
all initial data. Let us remark that for a generic central potential we could 
have disjoint set of initial data corresponding to closed orbits but in our case 
all points on certain level sets of the angular momentum lie on closed orbits 
which are intersections with the level sets of the additional invariant

• Fourth, Kepler and Manev problems share a common so (2 ,1) ~  su (l, 1) 
algebra associated with the radial motion and among the possible realiza­
tions of this algebra the Manev model forms a class of its own [3,5].

Here we want to add one more argument supporting the view that the Manev model 
is the natural generalization of the Kepler model.

A celebrated feature of the Kepler problem is its large symmetry algebras so (3) (or 
so (2,1) for positive energies) in addition to the angular momentum algebra. Here 
we demonstrate that the Manev model has exactly the same symmetry algebras on 
angular momentum level sets provided we choose the “right” Hamiltonian descrip­
tion of its dynamics. Even more, the same symmetry algebras are also possessed 
by the real form dynamics of the Manev model -  a closely connected dynamical 
model which we had already shown to be superintegrable for all initial data. This 
also stresses the importance of so(3) or so (2 ,1) dynamical symmetries due to their 
relevance for a wider class of models.
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2. The M anev Problem Basics

By Manev model [20] we mean here the dynamics given by the Hamiltonian

H = ^ ( p l + p 2y + p l )  ~ ^  ~ ^  , r =  x2 +  y2 +  z 2 . (1)

Here A and B  are assumed to be arbitrary real constants whose positive values 
correspond to attractive forces. The genuine model proposed by George Manev 
was not invented as an approximation of relativity theory but as a consequence 
of (more general) Planck’s action-reaction principle and he had derived a specific 
value for the constant B  =  ÿ A ,  where G is the Newton universal constant and 
c is the light velocity. (As Manev was the first to derive it from the first principles 
his name has been attached to this model despite the fact that it is known since 
Newton.) The Manev model offers a surprisingly good practical approximation 
to Einstein’s relativistic dynamics -  at least at a Solar system level -  capable to 
describe both the perihelion advance of the inner planets and the Moon’s perigee 
motion. It was also argued in [10] that in a certain approximative regime it is 
the natural classical analog of the Schwarzschild problem. In the last decade it 
had enjoyed an increased interest either as a very suitable approximation from 
astronomers’ point of view or as a toy model for applying different techniques of 
the modem dynamics (see, e.g., [4,8,10,22,23]).
Due to the rotational invariance each component of the angular momentum 

Lj =  ejkmPkXm with (x 1,x 2,x-3) =  (x , y , z ) 

is an obvious first integral {H, L j} =  0 and the model is Liouville integrable since 
H, L2 and any component, say Lz, of the angular momentum are in involution. 
The components themselves are not in involution but span an so (3) algebra with 
respect to the Poisson bracket

{Lj , L } Sjkm Lf, (2)

and if we approach the question of the integrability solely in Lj terms, we obtain 
the most simple example of non-commutative integrability [24,25],
The dynamics is confined on a plane which we assume to be X O Y  and is separable 
in polar coordinates r  and 9 =  arctan(y/a:). On the reduced phase space (see, 
e.g., [14] for the generalities of the reduction procedure) obtained by fixing the 
angular momentum Lz =  L to a certain value £, the motion is governed by the 
reduced Hamiltonian

Bred — 0 I Pr "T
e2 - 2 B A

r

and the “standard” symplectic structure

üü =  dpr A d r — dL A d6. (3)
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The dynamics behave like radial motion of Kepler dynamics with angular momen­
tum squared £2 — 2B, while the case 2B > £2 corresponds to overall centripetal 
effect. On the other hand, the angular equation of motion 9 =  £/r2 is still gov­
erned by the “authentic” angular momentum £ (and r  is as just described). Con­
sequently, the remarkable properties of Kepler dynamics that all negative energy 
orbits are closed and the frequencies of radial and angular motions coincide (for 
any initial conditions) are no more true. Thus we may have not only purely clas­
sical perihelion shifts we may have collapsing trajectories which are spirals but 
also if 2B > £2 /  0, even though in phase space they are symplectic transfor­
mations. Notice that in the Kepler dynamics the only allowed fall down is along 
straight lines. For this reason the set of initial data leading to collision has a posi­
tive measure and this may offer an explanation why collisions in the Solar system 
are estimated to happen more often than Newton theory predicts [9].

3. The Kepler Problem Invariants

In the case of Kepler problem, corresponding to B  =  0, we have more first integrals 
(for details and historical notes see, e.g., [6,17,18,26])

A A
Jx  — Pylj  > Jy — PxL  “ 2/ ’ { - ^ K, J )  — 0

where Hk  is the Kepler Hamiltonian and Jx and Jy are the components of the 
Laplace-Runge-Lenz vector. They are not independent since

J 2 =  2 Hk L2 +  A2.

Together with the Hamiltonian and angular momentum they close the Lie algebra 
(with respect to the Poisson bracket)

{Hk ,L}  =  0 , {L,Jx} =  Jy, {L,Jy} =  —Jx , {Jx, j y}  =  —2Hk L. 

After redefining E  =  J  j \J  | — 2hx\ on each H k  =  Iik  level set we get

{L, Ex) — E,y > {L, Ey} — Er {Ex, Ey) =  -  sign(hK ) L

which makes obvious the fact that we have an so (3) algebra for negative energies 
and so(2,1) for positive ones. In the case of the three-dimensional Kepler prob­
lem the components of the angular momentum give us another copy of so (3), see 
equation (2), so that the full symmetry algebra is so(4) or so (3 ,1) depending on 
the sign of Hk -
According to [18], the first use of these first integrals was made by J. Hermann 
(= J. Ermanno) in 1710 (in order to find all possible orbits under an inverse square 
law force) in the disguise of Ermanno-Bernoulli constants

/ L2
J± =  Jx ±  iJy = ------ ."1 : i Lf). ,±i0

r
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which satisfy

{H k ,J± }  =  0, {L, J±} =  ± iJ ± , {J+ ,J _ }  =  —4'iHk L .  (4)

4. The M anev Problem Invariants and Symmetries

Let us start with the observation that Manev Hamiltonian could be expressed as

where

H =  D +D _ -
A?

v 2l 2

D± P r ±  i up±
A

uL
L

P± =  -  r
and

e  - 2 B
e2

D -  have the property — D± =  : wD~  and hence —  D±e±lve =  0,

Noting that dt =  ^  d6 and multiplying by the first integral L (in order to achieve 
more similarity to “Ermanno-Bernoulli” constants) we obtain the invariance of

Pr  ±  1 ( VP_L -  ^J±  =  L D - i~ w" =  L 

Of course, J . and J -  are not independent as

-riJ± = 0 - (5)dt

A2
J .  J  =  2H L2 +  ,

Obviously in the Kepler case v  equals one and (up to a multiplication by i) we re­
cover the “Ermanno-Bemoulli” constants. When A =  0 we obtain “1 /r2 model” 
which attracted a lot of interest in the 1970’s due to its conformal symmetry provid­
ing it with an algebra of explicitly time-dependent quantities [7], The correspond­
ing restriction J±  | a_q seems to give previously unknown first integrals for “1 / r 2 
model” as well. One must note, however, some connection with the results of Fe- 
her [11] who uses the perihelion vector in the case of repulsive interaction (hence 
noncompact motion) to construct time-independent first integrals with large sym­
metry algebra. Actually the perihelion vectors were promoted as first integrals for 
any central field in [12] and utilized for some time afterwards before it was realized 
that they experience jumps in their direction when we have compact motion and 
correspondingly they are not genuine first integrals in this case.
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4.1. Compact Motion Case

In the case when £ /  0, £2 >  2B, H  < 0 and A >  0 the motion is on a two­
dimensional torus. In order to have globally defined constants of motion in this 
case we have to require that the real valued i/’s be rational, i.e.,

with m  and k mutually prime integers. Then due to equation (5) the quantities

are conserved by the flow of equation (1) on any surface L =  £ satisfying the 
rationality condition (6). Thus we have conditional constants of motion which 
exist only for disjoint but infinite set of values £, cf. the invariant relations of [19].
The trajectory in the configuration space is a “rosette” with m  petals and this is 
connected to the fact that J±  are invariant under the action of the cyclic group 
generated by rotations to the angle ^

While in the Kepler case we could unambiguously attach the Laplace-Runge-Lenz 
vector to Ermanno-Bemoulli invariants this is not possible now due to this finite 
symmetry. (It is intuitively clear that if the Laplace-Runge-Lenz vector points to 
the perihelion of the fixed Kepler ellipse, now we have m  petals to choose be­
tween.)

4.2. Noncompact Motion Cases

• When 0 /  £2 >  2B  and i f  > 0 the additional invariants are always globally 
defined and have the form just described with v  real.

• In the case when 0 /  £2 < 2B we may introduce v =  iu with v  real and 
respectively

v  =  \J £? — 2 B : £ =  m : k (6)

k
8 —» 8 +  2tt—n, n =  0 , 1 , . . . ,  m — 1.

m

will be first integrals for any £.
•  Linally, when £2 =  2B  we have the first integral

j  =  Lpr +  A8

satisfying { H , j }  =  0, { L , j }  =  A
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4.3. Symmetry Algebra

We had already commented [15] that Poisson brackets of J+  and J -  does not 
close on a “nice” algebra. Fortunately, one may note that on any L =  £ surface 
Manev’s model dynamical vector field could be also described by the pair

1 (  h 2\  A
H :'' = -  \ p î + v 2^ - ------, =  dpr A dr +  v 2àL  A d6 (8)

2 \ rz ) r

hence it is bi-Hamiltonian in this restricted sense. We shall denote the Poisson 
brackets corresponding to by { , and it is easy to check that

{ J + , J - Ÿ  =  ~ HL

analogously to equation (4), thus obtaining a closed algebra together with 

{ H , L Ÿ  =  0, { H , J ± Ÿ  =  0, { L ,J ± Ÿ  =  ± l- J ± .

Defining in the case of 0 /  l 2 >  2B

Jv'i
2

v
)2H ( J+ + J - ) K 2

2
IV
;\2H (J+

we obtain so(3) or so(2,1) algebra 

{Afi, Af2}^ =  sign( - H ) K Z , { K 2, K S}^ =  Jv ,

J - ) ,  K z =  vL

{ K ^ K x Ÿ  =  K 2

with Casimir invariant

K l  +  K l  +  sign ( - H ) K l
A2 
2 H

and so, the space of invariants is lying on a sphere or hyperboloid (which degener­
ate to a point or cone if A =  0).
Thus, the angular momentum and the analogues of the Laplace-Runge-Lenz vec­
tor components in Manev model have exactly the same algebra as in the Kepler 
model provided we choose the “right” Hamiltonian formulation of its dynamics -  
presented in equation (8).
Similarly, in the case of 0 /  l 2 <  2B  (which has no direct analogue in the Kepler 
mechanics) the new Poisson brackets of the invariants in (7) are

{ j + , j - Ÿ  =  —

and we can define

A', =
2 y/\2H\ (J+ + J-) K 2 =

2 s/\2H -(J+ ~ J-)  ■ AT3 =  vL
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and in this way to obtain so (2 ,1) algebra

{ K u K 2Ÿ  =  s \gn {-H )K z , { K 2, =  K x , { K s , =  - K 2

for both choices of the sign of H. The Casimir invariant is

K \  -  K 2 +  sign( - H ) K 2 =  .

The mere existence of an algebra of well defined first integrals does not presuppose 
suitable group action on the phase space. Here we have an immediate obstacle for 
the existence of group actions as J±  (or K \,  K 2) do not commute with L and 
hence do not preserve any L =  £ surface.
If we would like to find a “nice” algebra having some chance to yield a group 
action in the phase space it should be an algebra of rotationally invariant functions 
(i.e., commuting with L). Such an so (2 ,1) algebra had actually been obtained at 
the end of 1960’s as a tool for determining the energy levels in the quantum Manev 
model (but without calling it so) [1]. It is worth noting that this algebra somehow 
distinguishes the Manev model as soon it was demonstrated [5] that this is the 
most general model (under some set of assumptions) with discrete and continuous 
spectrum having this algebra. A more recent survey [3] reported that the only 
explicit potentials realizing su (l, 1) (isomorphic to so (2,1)) algebra with discrete 
spectrum are Manev, Morse and spiked oscillator (i.e., V  =  ar2 +  b/r2) ones. In 
the classical case the basis of the algebra is defined by

ï  't =  2  y'P ~ —  ~ rj  > T2 =  p ■ r , T3 =  -  ^rp2 -  —  +  r j  

so that

{Tu T2} =  T3 , {T2, Ts} =  7, , {T3, T J  =  —T2

and its Casimir invariant is

i f  -  7 f  -  i f  =  £2 - 2 B  .

Thus the space of Tj-s is two- or one-sheeted hyperboloid for positive/negative 
values of £2 — 2B, or a cone if £2 =  2B. Let us note that this is not a symmetry al­
gebra as its elements do not commute with the Hamiltonian, and as all its elements 
commute with L it does not matter whether we use Poisson brackets corresponding 
to uj -  equation (3), or to -  equation (8).
The Hamiltonian does not depend linearly on 7 )-s but the combination

rH  =  i  (Ti +  T3) -  A
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does and hence through an appropriate reparametrization the radial motion could 
be represented as a dynamics on the algebra. To see this let us note that

{r(H  -  h),Ti} =  r{H, Tt} +  (H -  h){r, Tt} 
and hence on each H  =  h level set

AT-
{ r ( H - h ) , T i} =  r{H ,T t} =  r ^

so that the if-evolution is just the reparametrized [ |( 'î i  +  Tf) — h(T% — Ti) — ü j - 
evolution.

Remark 1. There exists also an algebra which is closed for the Poisson brackets 
corresponding to the initial symplectic structure equation (3) formed by L and

1 i e
£±  =  rD-te*  »

as
{L. £_} =  =t— , {£ . . £  } =  2ioL.

v
This algebra may be considered as a generalization of the algebra used in [21] to 
obtain the energy levels of the Coulomb problem. One should note that £±  are 
neither H-, nor L-invariant making this algebra less appealing for our purposes.

5. Real Form Dynamics o f the M anev Problem

We shall be dealing here with the “real form dynamics” of the Manev model. The 
notion of real form dynamics has been introduced very recently and we refer the 
interesting reader to [13] for its motivation, definition and a list of examples.
The Manev Hamiltonian (and the canonical symplectic form as well) is invariant 
under the involution C reflecting the y-degree of freedom

C(x) =  x, C(y) =  - y ,  C(z) =  z

C(px) =  Pxi CijPy) =  Py, C(pz) =  pz .
Consequently, the “real form dynamics” of Manev model for this choice of involu­
tion will be given by

1 A B
Hm =  ~{pi - pI + pI ) ----------- y , =  dpx A dx -  dpy Ad y +  d pz A dz2 y p pz

where p =  \Jx2 — y2 +  z 2 is the “radius” of the pseudo-sphere. This is not an 
ordinary central field dynamics but rather an “indefinite metric central field” as 
ffR depends on indefinite metric distance p. The real form Hamiltonian ffR and 
the appropriate “angular momentum” Lj  are still commuting first integrals and the 
model is integrable. The involution acts on Lj according to

C(Lj) =  i - i y i j  and { Lj , Lk} =  sjkt( - i y +1Lt
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instead of equation (2). The resulting algebra is so (2 ,1) which is the real form of 
so (3) corresponding to C taking the rôle of Cart an involution.
We shall assume again that the motion is on the X O Y -plane and in order to avoid 
the question of the behavior of trajectories on the singularities we restrict our at­
tention on the C-invariant configuration space

Then the dynamics is separable in pseudo-polar coordinates p e  (0, oo) and d =
artanh(y/:c) G (—0 0 , 0 0 )

The analysis of the resulting trajectories could be found in [15] and we shall not 
reproduce it here but we shall concentrate on the symmetry properties of the model.

5.1. Symmetries of the Real Form Manev Model

Proceeding as before, one could easily find the additional first integrals. What 
is different is that since the motion is never on a two-torus the new integrals are 
always globally defined on each L =  £ level set for all initial data. We have to 
consider the following cases:
Case 1. When 0 /  £2 >  —2B  the integrals take the form

{(x,  y, z) G l 2 ; z =  0, x2 > y2, x > 0} .

with L =  Lz =  iïÿ, hence lïÿ =  0 and é  =  —L /p 2

with

v
2 e2 +  2B 

e2
L

V-L =  -  
p

J -  are not independent as

J + J -  =  - 2 H L2 +  „ .

The alternative Hamiltonian description

again provides us with new Poisson brackets { , corresponding to and it is 
easy to check that

=  —- H L .
V
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Now we can define
v

A'i = ( J + + J - ) ,  K 2 =
2 s/\2H

:(J+ -  J - ) , K z =  vL
2sf\2 if,

to obtain so(2,1) algebra

{K u K 2Ÿ  = s ign(-H )K s , {K2, K s}<> = K t, {Ks , K t Ÿ  = - K 2

for both choices of the sign of H.  Its Casimir invariant is

A2
K f - K l  + s ign(-H)Kl  = —

2 H\

Case 2. In the case when 0 /  £2 < —2B  let v 2 =  ^  p  2B) and we obtain new 
invariants which are globally defined for any £

J ± =  J * = L

with

Defining

A 2
J .  J  =  2HL  +  „ .v

K i  =  0— r(J+ +  J - ) , K 2 =  ~ ^ = = { J + -  J _ ) , K z =  - v L
2%f\2H\K + - 2 s / \ m \ K

we obtain so(3) or so(2,1) algebra

{ K t , K 2Ÿ  =  s ign(-H)K 3 , {K2, = K t , { K z , =  K 2

with Casimir invariant
A2

K l  +  K l  +  sign ( - H ) K l  =

Case 3. When £2 =  —2B  we have the first integral

j  =  Lpp -  Aê

satisfying { H, j }  =  0, { L , j }  =  - A .

2 H\

6. Conclusions

We have shown that Manev model not only possesses Ermanno-Bemoulli type 
invariants but also has exactly the same symmetry algebras so(3) or so (2 ,1) as 
the Kepler model (in addition to the angular momentum algebra). This indicates 
that Manev model shares its most celebrated mathematical features and is the most 
natural candidate for its generalization.
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