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Abstract, In this note we adapt Axler and Ramey’s method of constructing 
die harmonic part of a homogeneous polynomial to the Fischer decomposi
tion associated to Dirac operators acting on polynomial spinors. The result 
yields a constructive solution to a Dirichlet-like problem with polynomial 
boundary data.

It is well-known [3] that any homogeneous real or complex polynomial pk of de
gree k = 0 ,1 ,2 , . . .  in n > 2 real variables x  =  (xq, x o , . . . ,  x n) admits an unique 
decomposition

pk(x) =  hk(x) +  |x |2pfc_2(x) (1)
where hk is a homogeneous harmonic polynomial of degree k, pk - 2  is a homoge
neous polynomial of degree k — 2. and, as usual, |x| =  \Jx\ +  x% +  • • • +  x 2n.
In [1] Axler and Ramey presented an elegant, elementary way of constructing hk 
from pk, which involves only differentiation. In essence, for k > 0

hk(x)
cfc 1|x |2fcpfc(D)(log |x|), if n =  2

c^1|x|'n_2+2fcpfc(D)(|x|2_n), if n > 2
( 2)

where
( (—2)k~1(k — 1)!, if n =  2

ck = { ' ' (3)
{ n*=o (2 - n -  2j ) ’ if n > 2

and where pk(D)  is the associated partial differential operator acting on smooth 
functions defined on open subsets of K" obtained by replacing a typical monomial

d k
x f h x - ? 2 . . .  X-“ " ,  « 1  +  « 2  + ------- h a n =  k .  of p k  by --------q ^ -

As a by-product they obtained a speedy solution to the Dirichlel problem on the 
unit ball of K" with polynomial boundary data which eliminates the use of the 
impractical Poisson integral.
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The purpose of this note is to establish similar results when polynomials are re
placed by polynomial spinors and harmonic polynomials by polynomial Dirac 
spinors, i.e., polynomial solutions of Dirac equations.

To this end consider an action of the real Clifford algebra Cln := Cl(Rn) on 
some complex space C ^ . Equivalently, one is presented with n  skew-Hermitian 
N  x N  complex matrices E ± ,E 2, . . . , E n such that for every i, E 2 =  — Id and 
E iE j +  E jE i  =  0, for every i /  j .  The Euclidean Dirac operator is then the 
differential operator

P  : C°°(U, CN ) — ► C°°(U, C N ), U Ç l n open 

defined for spinors s e  C°°(U , C ^) written in column form by

$>s = Y J E t
i I

ds
d x t

where —— represents component-wise differentiation of s with respect to Xi. It is
OX<i

easily seen that TJ) is a self-adjoint first order elliptic differential operator satisfying 
the following properties:

n  ß f
P ( J s ) = g m d f - s  + f P s ,  f  e  C °°(U ,C ), grad f  ■ s := (4)

i=i OXt
p 2 =  —A, where A is the component-wise Laplacian on C°°(U , C N ). (5)

Denote now by Pk the subspace of C°°(Wn, C N) consisting in spinors with poly
nomial components, homogeneous of degree k, and by Hu the subspace of Pk 
consisting in polynomial Dirac spinors, i.e.,

Hk := {pk G Pk', P(Pk) =  0}.

Clearly, P (P k)  Ç P k - i (P - i  =  0). If one denotes by a:-the Clifford multiplication
n

in C N by x  e  Rn, i.e., x  ■ v =  x iEiV, v e  C N, then x  ■ Pk Ç Pk+i-
i= 1

Lemma. Let hk 6 Hk be a polynomial Dirac spinor o f  degree k. Then

P ( x  ■ h k) = - ( n  +  2k )h k . (6)

Consequently, x  ■ hk has harmonic components.
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Proof: Since x- grad
2

• and p h k 0, equations (4) and (5) give

P ( x  ■ hk) = p grad

=  - A

hk

However,

I |.r|- \  (  |rc|2\  ^  ö (12 ) dhk \x\2
hk + 2 ^ ^ ~ d ^  + ^ A hk  

n dhk \x\2
=  n h k +  2 --------- — p 2hk = (n +  2 k )h k

i = o  öx% 1

d h k
= khk- This provessince for homogeneous polynomials of degree k, T] Xi ——

i=l OXi
equation (6). By (5) and (6), A (a: • hk) =  — P 2(x ■ hk) =  (n  +  2k) p h k  =  0. 
The proof of the Lemma is complete. □

The following theorem, called sometimes the Fischer decomposition for polyno
mial spinors [2], holds now true:

Theorem 1. Any element pk o f  Pk can be uniquely decomposed as

pk(x) = hk(x) +  x  • pk- i ( x )  (7)

fo r  suitable hk 6 Hk and p k - i  G P k -1-

Although proofs of the Fischer decomposition exist in much more general set
tings [2] we will reprove it here in a way that is beneficial for what follows.

Proof: Any polynomial spinor pk G Pk can be written, by applying equation (1) 
component-wise, as

Pk(x) =  a k(x )  +  \x\2ß k-2 (x )
where a/» G Pk has harmonic components and ßk- 2 G P k -2- As a result, equa
tion (5) gives p 2ak =  0. We claim that for a suitable constant A G Q, to be 
determined, +  Xx- Pa.k is a polynomial Dirac spinor of degree k. Indeed, since 
Poik G H k -1, by the Lemma, P(ctk +  Xx- P a k )  =  (1 — A(n  +  2k — 2)) Pctk, 
and so a/» +  Xx- P a k  G Hk if

A =
fo,

71 — 2 +  2k

if A: =  0

if k  > 0.
(8)
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Setting now h k := a k + Xx- JJ>ak and pk- i  '■= —A fi>ak — x  ■ ß k- 2> A given by (8), 
proves the existence part of Theorem 1 because x  ■ x- =  —\x\2.
The uniqueness part is equivalent to showing that if 0 =  hk +  x  ■ p k - i ,  h k € H k, 
P k-i e  P k - i,  then hk =  0 and p k - i  = 0. It follows that

0 =  - x  ■ hk +  \ x fp k - i  (9)

and invoking the above Lemma again - x - h k has harmonic polynomial components
of degree k  +  1. hk =  0 and P k-i =  0 follow now from the uniqueness of the 
decomposition (1) in degree k  + 1, applied component-wise to equation (9). □

Theorem 2. In the Fischer decomposition (7), ho =  po and fo r  k  > 0 hk can be 
calculated from pk according to the rule

( ~ ck+ilx \2kx- f t ( p k (D)(log \x\)), i f  n = 2
hk(x) =

{ - ck+i\x \n~2+2kx'¥ >(Pk(D )(\x\2~n)), i f  n >  2

where Ck is given by (3) and Pk(D) is the spinor-valued partial differential opera
tor defined according to the recipe following equation (3).

Proof: By Theorem 1 and equation (2), for k  > 0 we have

hk = oik -1-------------- -x -  JZ>ak
n — 2 + 2k ^

where
f cfc1N |2Vfc(^))(log|a:|), if n =  2

a k(x ) =  \
\ c f 1\x\n~2+2kpk(D )(\x \2~n), if n  > 2.

Noticing now that for every n > 2 we can write oik =  c f 1\x\n~2+2kak, where for 
x  /  0

f  Pk(D)()°ë, NDi if b =  2
ak(x) =  <

[pk(D )(\x \2~n), i î n > 2
we have, via equation (4), 

x- fi>ak = x- ( c f 1\x\n- 2+2k(Tk)

= c f l x -grad ^ ( N |2) 2 ^ • ok +  c ^ 1|a:|n_2+2fca:- TJ)ok

=  c f 1 — 1 + kJ  \x\n~4+2kx -grad -ak +  c f 1 \x\n~2+2kx- fi>ak

=  c^'1(b — 2 +  2k)\x\n~4+2k x-x-ak +  c f 1 \x\n~2+2kx- fi>ak 

= c ^ i n  - 2  + 2k)\x\n~4+2k ( - \ x \ 2)-ak +  c f 1 \x\n~2+2kx- fi>ak 

= - ( n  - 2  + 2 k )a k +  c f 1 \x\n~2+2kx- fi>ak .
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Consequently,

which is the Theorem 2 claim. □

By iterating the Fischer decomposition (7) we conclude that every homogeneous 
polynomial spinor pk G Pk can be uniquely represented as

k
Pk = y ^t x-x- . . . x - h k - j  (10)

j = 0  j  times

for suitable hk G Hk, hk-1 G H k - i,  ■■■, ho G H q. Equation (10) is useful in 
assessing constructively when the following Dirichlet-like problem for the Dirac 
operator has solution (see [3, 1] for the harmonic case).

Corollary. For a given v £ Pk the Dirichlet-like problem on the closed unit ball 
B n in Rn with polynomial boundary data v,

V>u = o, u \9Bn= v \9Bn (H )

has a solution u G C °°(B n , C N ) i f  and only i f  in the decomposition (10) fo r  v the 
odd part ^  x -x - . .. æ- h k - j  vanishes. When a solution exists it is unique and it

j  odd j  times

is a polynomial spinor (not necessarily homogeneous) which can be constructed 
explicitly by employing the rule given in Theorem 2 to v. More precisely, referring 
again to the decomposition (10) fo r  v,

u = hk — hk- 2 +  hk- 4 — • • •

Proof: Assume that u g C °°(B n , CN ) is a solution for (11). Since p 2 =  —A, u 
is then also a solution to the usual Dirichlet problem

A “ =  °> % Bb= 1 W  (12>
However, (12) has an unique solution [3,1] which can be obtained in the following

k
way: via (10), express v uniquely as v =  . . . x - h k - j ,  for suitable hk G

i = 0 j  times

Hk, hk-1 G H k -1, . . . ,  ho G H q. Since x-x- =  —\x\2, on d B n =  {|rc| =  1} we 
have

v( x)  =  (hk(x)  +  x - h k - i ( x ) )  -  \x \2 ( h k - 2 ( x )  +  x-hk- s ( x ) )

+  \x\4 (h k - d x )  +  x - h k - d x ) ) ------=  (hk(x) +  x-hk- \ ( x ) )

~  (h k- 2(x) +  x-hk- d x )) +  (hk- d x )  +  x -h k -d x ) )  ~



126 Nicolae Anghel

and so the Lemma implies that

(hk +  x-h k- 1) -  (hk- 2 +  x -h k-z)  +  (hk-4  +  x-hk--0) +  . . .  

is the solution u of (12). The Lemma also gives

P u  =  —(n  +  2 k  — 2)hk- i  +  (n +  2 k  — 6)hk—3 — (n +  2 k  — 10)hk—5 +  • • • (13)

and since by the original hypothesis P u  =  0, the vanishing of the right hand side 
of equation (13) is easily seen to be equivalent to x -x - . . ,x-t hk_j =  0.

j  odd j  tjmes

Conversely, if x -x - . .. x ^ hk_ j =  0 then v =  x -x - . .. x-Jik_ j. As before,
j  odd j  times Î even j  times

on d B n ,

x-x- . x - h k- ,{ x )  = h k(x) -  hk- 2(x) +  h k- 4(x) -  . . .
j  even j  times

and so u := hk — h k_2 +  h k_4 — . . .  is a solution to (11). The uniqueness 
of u  follows from the fact that it is also (the unique) solution for (12). Clearly 
Theorem 2 allows the construction of hk, then hk- 2, then hk- 4, etc., therefore, the 
construction of u. □
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