CURVATURE PROPERTIES OF SOME THREE-DIMENSIONAL ALMOST CONTACT MANIFOLDS WITH B-METRIC II

GALIA NAKOVA ${ }^{\dagger}$ and MANCHO MANEV ${ }^{\ddagger}$
${ }^{\dagger}$ Department of Algebra and Geometry, University of Veliko Tarnovo
1, Theodosij Tarnovsky Str, 5000 Veliko Tarnovo, Bulgaria
${ }^{\$}$ Faculty of Mathematics and Informatics, University of Plovdiv
236, Bulgaria Blvd., 4003 Plovdiv, Bulgaria

Abstract

The curvature tensor on a 3 -dimensional almost contact manifold with B-metric belonging to two main classes is studied. These classes are the rest of the main classes which were not considered in the first part of this work. The dimension 3 is the lowest possible dimension for the almost contact manifolds with B-metric. The corresponding curvatures are found and the respective geometric characteristics of the considered manifolds are given.

1. Preliminaries

Let $\left(M^{2 n+1}, \varphi, \xi, \eta, g\right)$ be a $(2 n+1)$-dimensional almost contact manifold with B -metric, i.e. (φ, ξ, η) is an almost contact structure and g is a metric on M such that:

$$
\varphi^{2}=-\mathrm{id}+\eta \otimes \xi, \quad \eta(\xi)=1, \quad g(\varphi X, \varphi Y)=-g(X, Y)+\eta(X) \eta(Y)
$$

where $X, Y \in \mathcal{X} M$.
Both metrics g and its associated $\tilde{g}(X, Y)=g^{*}(X, Y)+\eta(X) \eta(Y)$ are indefinite metrics of signature $(n, n+1)$ [1], where it is denoted $g^{*}(X, Y)=g(X, \varphi Y)$.
Further, X, Y, Z, W will stand for arbitrary differentiable vector fields on M (i.e. the elements of $\mathcal{X} M$) and x, y, z, w are arbitrary vectors in the tangential space $T_{p} M, p \in M$.
Let $\left(V^{2 n+1}, \varphi, \xi, \eta, g\right)$ be a $(2 n+1)$-dimensional vector space with almost contact structure (φ, ξ, η) and B-metric g. It is well known the orthogonal decomposition $V=h V \oplus v V$ of $\left(V^{2 n+1}, \varphi, \xi, \eta, g\right)$, where $h V=\left\{x \in V ; x=h x=-\varphi^{2} x\right\}$, $v V=\{x \in V ; x=v x=\eta(x) \xi\}$. Denoting the restrictions of g and φ on $h V$ by the same letters, we obtain the $2 n$-dimensional almost complex vector space
$\{h V, \varphi, g\}$ with a complex structure φ and B-metric g. Then for arbitrary $x \in$ V we have $x=h x+\eta(x) \xi$. The basis $\left\{e_{1}, \ldots, e_{n}, \varphi e_{1}, \ldots, \varphi e_{n}, \xi\right\}$, where $-g\left(e_{i}, e_{j}\right)=g\left(\varphi e_{i}, \varphi e_{j}\right)=\delta_{i j}, g\left(e_{i}, \varphi e_{j}\right)=0, \eta\left(e_{i}\right)=0, i, j=1, \ldots, n$, is said to be an adapted φ-basis of V.
A decomposition of the class of the almost contact manifolds with B-metric with respect to the tensor $F: F(X, Y, Z)=g\left(\left(\nabla_{X} \varphi\right) Y, Z\right)$ is given in [1], where eleven basic classes $\mathcal{F}_{i}(i=1, \ldots, 11)$ are defined. The Levi-Civita comection of g is denoted by ∇. The special class $\mathcal{F}_{0}: F=0$ is contained in each of classes \mathcal{F}_{i}. The following 1 -forms are associated with $F: \theta(x)=g^{i j} F\left(e_{i}, e_{j}, x\right)$, $\theta^{*}(x)=g^{i j} F\left(e_{i}, \varphi e_{j}, x\right), \omega(x)=F(\xi, \xi, x)$, where $\left\{e_{i}, \xi\right\}(i=1, \ldots, 2 n)$ is a basis of $T_{p} M$ and $\left(g^{i j}\right)$ is the inverse matrix of $\left(g_{i j}\right)$.
In this paper we consider two of the main classes engendered by the main components of F :

$$
\begin{aligned}
\mathcal{F}_{1}: F(x, y, z)= & \frac{1}{2 n}\left\{g(x, \varphi y) \theta(\varphi z)+g(x, \varphi z) \theta(\varphi y)+g(\varphi x, \varphi y) \theta\left(\varphi^{2} z\right)\right. \\
& \left.+g(\varphi x, \varphi z) \theta\left(\varphi^{2} y\right)\right\} \\
\mathcal{F}_{11}: F(x, y, z)= & \eta(x)\{\eta(y) \omega(z)+\eta(z) \omega(y)\} .
\end{aligned}
$$

The subclasses $\mathcal{F}_{1}^{0}, \mathcal{F}_{11}^{0}$ are defined [2] by:

$$
\mathcal{F}_{1}^{0}=\left\{M \in \mathcal{F}_{1} ; \mathrm{d} \theta=\mathrm{d} \theta^{*}=0\right\}, \quad \mathcal{F}_{11}^{0}=\left\{M \in \mathcal{F}_{11} ; \mathrm{d} \omega \circ \varphi=0\right\} .
$$

An almost contact manifold with B-metric in the class \mathcal{F}_{i} we call an \mathcal{F}_{i}-manifold ($i=0,1,2, \ldots, 11$) in short.

The curvature tensor R for ∇ is defined as ordinary by $R(X, Y, Z)=\nabla_{X} \nabla_{Y} Z-$ $\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z$. The corresponding tensor of type (0,4) is denoted by the same letter and is given by $R(X, Y, Z, W)=g(R(X, Y, Z), W)$. The Ricci tensor ρ and the scalar curvature τ of R are given by $\rho(y, z)=g^{i j} R\left(e_{i}, y, z, e_{j}\right), \tau=$ $g^{i j} p\left(e_{i}, e_{j}\right)$, where $\left\{e_{i}\right\}(i=1,2, \ldots, 2 n+1)$ is a basis of $T_{p} M$.
A tensor L of type $(0,4)$ is said to be a curvature-like tensor if it satisfies the conditions:
$L(X, Y, Z, W)=-L(Y, X, Z, W)=-L(X, Y, W, Z), \underset{(X, Y, Z)}{\sigma} L(X, Y, Z, W)=0$.
A curvature-like tensor L is said to be a Kähler tensor if it satisfies the Kähler property $L(X, Y, Z, W)=-L(X, Y, \varphi Z, \varphi W)$.

Let S be a tensor of type $(0,2)$. We use the following tensors, invariant under the action of the structural group $(G L(n, \mathbb{C}) \cap O(n, n)) \times I$:

$$
\begin{aligned}
\psi_{1}(S)(x, y, z, w)= & g(y, z) S(x, w)-g(x, z) S(y, w)+g(x, w) S(y, z) \\
& -g(y, w) S(x, z) \\
\psi_{2}(S)(x, y, z, w)= & \psi_{1}(S)(x, y, \varphi z, \varphi w) \\
\psi_{3}(S)(x, y, z, w)= & -\psi_{1}(S)(x, y, \varphi z, w)-\psi_{1}(S)(x, y, z, \varphi w) \\
\psi_{4}(S)(x, y, z, w)= & \psi_{1}(S)(x, y, \xi, w) \eta(z)+\psi_{1}(S)(x, y, z, \xi) \eta(w) \\
\psi_{5}(S)(x, y, z, w)= & \psi_{1}(S)(x, y, \xi, \varphi w) \eta(z)+\psi_{1}(S)(x, y, \varphi z, \xi) \eta(w) .
\end{aligned}
$$

It is well known, that the tensors $\pi_{i}=\frac{1}{2} \psi_{i}(g)(i=1,2,3), \pi_{i}=\psi_{i}(g)(i=4,5)$ are curvature-like tensors and $\pi_{1}-\pi_{2}-\pi_{4}, \pi_{3}+\pi_{5}$ are Kähler tensors.
A decomposition of the space of curvature tensors \mathcal{R} over $\left(V^{2 n+1}, \varphi, \xi, \eta, g\right)$ into 20 mutually orthogonal and invariant under the action of the structural group factors is obtained in [6]. It is valid the partial decomposition $\mathcal{R}=h \mathcal{R} \oplus v \mathcal{R} \oplus w \mathcal{R}$, where $h \mathcal{R}=\omega_{1} \oplus \cdots \oplus \omega_{11}, v \mathcal{R}=v_{1} \oplus \cdots \oplus v_{5}, w \mathcal{R}=w_{1} \oplus \cdots \oplus w_{4}$. The characteristic conditions of the factors $\omega_{i}(i=1, \ldots, 11), v_{j}(j=1, \ldots, 5) w_{k}$ $(k=1, \ldots, 4)$ are given in [6]. Following [7], an almost contact manifold with B-metric is said to be in one of the classes ω_{i}, v_{j}, w_{k} if R belongs to the corresponding component.
Let $\left(M^{3}, \varphi, \xi, \eta, g\right)$ be a 3 -dimensional almost contact manifold with B-metric. According to [1] the class of these manifolds is $\mathcal{F}_{1} \oplus \mathcal{F}_{4} \oplus \mathcal{F}_{5} \oplus \mathcal{F}_{8} \oplus \mathcal{F}_{9} \oplus \mathcal{F}_{10} \oplus$ \mathcal{F}_{11}. From the decomposition of \mathcal{R} it follows that a 3-dimensional almost contact manifold with B -metric cannot belong to the factors $\omega_{i}(i=1,2,3,4,9,10,11)$, $v_{j}(j=4,5)$.
Let us recall that we have
Proposition 1.1 ([4]). The curvature tensor on every 3-dimensional almost contact manifold with B-metric has the form $R=\psi_{1}(\rho)-\frac{\tau}{2} \pi_{1}$.
Proposition 1.2 ([4]). Every 3-dimensional almost contact manifold with B-metric belongs to the class $\omega_{5} \oplus v_{1} \oplus w \mathcal{R}$.

Lemma 1.1 ([4]). Every Kähler curvature-like tensor on a 3-dimensional almost contact manifold with B-metric is zero.

The curvature properties of a 3 -dimensional \mathcal{F}_{i}^{0}-manifold ($i=4,5$) are studied in [4]. In this paper we consider analogous problems for a 3 -dimensional \mathcal{F}_{i} manifold ($i=1,11$). The present work completes the above mentioned investigations on the main classes of the considered manifolds. The curvature tensor identities for \mathcal{F}_{i}^{0}-manifold $(i=1,11)$ are found in [3]. It is not difficult to verify that these identities are valid for the classes $\mathcal{F}_{i}(i=1,11)$, too.

2. Curvature Properties on a 3-dimensional \mathcal{F}_{1}-manifold

Let $\left(M^{2 n+1}, \varphi, \xi, \eta, g\right)$ be an \mathcal{F}_{1}-manifold. Then its curvature tensor R satisfies the properties:

$$
\begin{gather*}
R(x, y, \xi)=0 \tag{1}\\
R(x, y, \varphi z, \varphi w)=-R(x, y, z, w)-\left\{\frac{1}{2 n}\left\{\psi_{1}+\psi_{2}-\psi_{4}\right\}(H)\right. \\
\left.-\frac{1}{8 n^{2}}\left\{\psi_{1}+\psi_{2}-\psi_{4}\right\}(P)-\frac{\theta(Q)}{4 n^{2}}\left\{\pi_{1}+\pi_{2}-\pi_{4}\right\}\right\}(x, y, z, w) \tag{2}
\end{gather*}
$$

where

$$
\begin{aligned}
H(y, z)= & -\left(\nabla_{y} \theta\right) \varphi z-\frac{1}{4 n}\{\theta(y) \theta(z)-\theta(\varphi y) \theta(\varphi z)\} \\
= & \left(\nabla_{y} \theta^{*}\right) z-\frac{1}{2 n}\left\{\theta(Q) g(\varphi y, \varphi z)+\theta^{*}(Q) \theta(y, \varphi z)\right\} \\
& +\frac{1}{4 n}\left\{\theta(y) \theta(z)+3 \theta^{*}(y) \theta^{*}(z)\right\}
\end{aligned}
$$

and Q is the corresponding vector field of θ with respect to g, i.e. $\theta=g(Q, \cdot)$

$$
P(y, z)=\theta(y) \theta(z)+\theta(\varphi y) \theta(\varphi z)
$$

From (1) it follows $\rho(y, \xi)=\rho(\xi, y)=0$. Obviously for the tensor fields H and P we have

$$
\begin{equation*}
H(y, \xi)=0, \quad \operatorname{Tr} H=\operatorname{Tr}\left(\nabla \theta^{*}\right)+\frac{1}{2} \theta(Q), \quad \operatorname{Tr} H^{*}=\operatorname{Tr}(\nabla \theta)+\frac{1}{2} \theta^{*}(Q) \tag{3}
\end{equation*}
$$

where $H^{*}(y, z)=H(y, \varphi z)$;

$$
\begin{gather*}
P(y, z)=P(z, y), \quad P(\varphi y, \varphi z)=P(y, z), \quad P(y, \xi)=P(\xi, y)=0 \\
\operatorname{Tr} P=\operatorname{Tr} P^{*}=0 \tag{4}
\end{gather*}
$$

where $P^{*}(y, z)=P(y, \varphi z)$.
Remark 2.1. If $\left(M^{2 n+1}, \varphi, \xi, \eta, g\right) \in \mathcal{F}_{1}^{0}$, then both 1-forms θ, θ^{*} are closed and consequently the tensor field H has the properties: $H(y, z)=H(z, y)$, $H(\varphi y, \varphi z)=-H(y, z)[3]$.

Lemma 2.1. Let $\left(M^{3}, \varphi, \xi, \eta, g\right)$ be an \mathcal{F}_{1}-manifold. Then $\psi_{1}(P)=\psi_{4}(P)$ and $\psi_{2}(P)=0$.

Proof: Let $\left\{e_{1}, \varphi \epsilon_{1}, \xi\right\}$ be a φ-basis of $T_{p} M, p \in M$. For arbitrary $x \in T_{p} M$ we have the decomposition $x=x^{1} e_{1}+x^{2} \varphi e_{1}+\eta(x) \xi$. Taking into account (4) by direct computations we obtain immediately $\psi_{1}(P)=\psi_{4}(P)$ and $\psi_{2}(P)=0$.

From Lemma 1.1 it follows that the Kähler tensor $\pi_{1}-\pi_{2}-\pi_{4}$ on $\left(M^{3}, \varphi, \xi, \eta, g\right)$ is zero. Using (2), Lemma 2.1 and $\pi_{1}-\pi_{2}-\pi_{4}=0$ for the curvature tensor of a 3-dimensional \mathcal{F}_{1}-manifold we have

$$
\begin{equation*}
R(x, y, \xi)=0 \tag{5}
\end{equation*}
$$

$$
R(x, y, \varphi z, \varphi w)=-\left\{R+\frac{1}{2}\left\{\psi_{1}+\psi_{2}-\psi_{4}\right\}(H)-\frac{\theta(Q)}{2} \pi_{2}\right\}(x, y, z, w)
$$

Proposition 1.1 and the last equality imply

$$
\begin{equation*}
\psi_{1}(\rho)+\psi_{2}(\rho)=-\frac{1}{2}\left\{\psi_{1}+\psi_{2}-\psi_{4}\right\}(H)+\frac{\tau}{2} \pi_{1}+\frac{1}{2}\{\tau+\theta(Q)\} \pi_{2} \tag{6}
\end{equation*}
$$

After a contraction of (6) we obtain

$$
\begin{align*}
& 2 \rho(y, z)=\rho(\varphi y, \varphi z)-\frac{1}{2}\{\tau+\theta(Q)-\operatorname{Tr} H\} g(\varphi y, \varphi z) \\
& \quad-\frac{1}{2}\left\{2 \tau^{\prime \prime}+\operatorname{Tr} H^{*}\right\} g(y, \varphi z)+\frac{1}{2}\{H(\varphi y, \varphi z)-H(y, z)-\eta(y) H(\xi, z)\} \tag{7}
\end{align*}
$$

where $\tau^{\prime \prime}=g^{i j} \rho\left(e_{i}, \varphi e_{j}\right)$.
By the substitution $y=\xi$ in (7) we find $H(\xi, z)=0$. Having in mind $H(\xi, z)=$ $H(z, \xi)=0$ and the decomposition $x=x^{1} e_{1}+x^{2} \varphi e_{1}+\eta(x) \xi$ for arbitrary $x \in T_{p} M$ we establish the truthfulness of the following

Lemma 2.2. Let $\left(M^{3}, \varphi, \xi, \eta, g\right)$ be an \mathcal{F}_{1}-manifold. Then we have:
i) $\psi_{2}(H)=\operatorname{Tr} H \pi_{2}$;
ii) $\psi_{1}(H)=\psi_{4}(H)+\operatorname{Tr} H \pi_{2}$;
iii) $H(\varphi y, \varphi z)-H(y, z)=\operatorname{Tr} H g(\varphi y, \varphi z)+\operatorname{Tr} H^{*} g(y, \varphi z)$.

The property iii) from Lemma 2.2 implies $H(\varphi y, \varphi z)-H(y, z)=H(\varphi z, \varphi y)-$ $H(z, y)$. In the last equality we substitute φz for z and using the definitions of H and $\mathrm{d} \theta\left(\mathrm{d} \theta(y, z)=\left(\nabla_{y} \theta\right) z-\left(\nabla_{z} \theta\right) y\right)$ we have

Corollary 2.1. For every 3-dimensional \mathcal{F}_{1}-manifold we have $(\mathrm{d} \theta) \circ \varphi=\mathrm{d} \theta$.
Theorem 2.1. The curvature tensor, the Ricci tensor and the scalar curvature on a 3-dimensional \mathcal{F}_{1}-manifold are given respectively by:

$$
\begin{gather*}
R(x, y, z, w)=\frac{\tau}{2} \pi_{2}(x, y, z, w) \tag{8}\\
\rho(y, z)=-\frac{\tau}{2} g(\varphi y, \varphi z) \tag{9}\\
\tau=-\operatorname{Tr} H+\frac{\theta(Q)}{2}=-\operatorname{Tr}\left(\nabla \theta^{*}\right) \tag{10}
\end{gather*}
$$

Proof: Taking into account the equalities i) and ii) from Lemma 2.2, the equality (6) gets the form

$$
\begin{equation*}
\psi_{1}(\rho)+\psi_{2}(\rho)=\frac{\tau}{2} \pi_{1}+\frac{1}{2}\{\tau+\theta(Q)-2 \operatorname{Tr} H\} \pi_{2} . \tag{11}
\end{equation*}
$$

After the substitution $y=w=\xi$ in (11) and because of $\rho(\xi, z)=0$ we obtain (9). Then Proposition 1.1 and (9) imply (8). Finally, using (9) and (11) we compute the scalar curvature τ of R.
The equality iii) of Lemma 2.2 and Remark 2.1 imply the following form of the tensor H on a 3 -dimensional \mathcal{F}_{1}^{0}-manifold

$$
H(y, z)=-\frac{1}{2}\left\{\operatorname{Tr} H g(\varphi y, \varphi z)+\operatorname{Tr} H^{*} g(y, \varphi z)\right\}
$$

3. Curvature Properties on a 3-dimensional \mathcal{F}_{11}-manifold

Let ($M^{2 n+1}, \varphi, \xi, \eta, g$) be an \mathcal{F}_{11}-manifold. Then the curvature tensor R on $\left(M^{2 n+1}, \varphi, \xi, \eta, g\right)$ satisfies the properties:

$$
\begin{gather*}
R(x, y, \xi)=\psi_{4}\left(S_{11}\right)(x, y, \xi) \tag{12}\\
R(x, y, \varphi z, \varphi w)=-R(x, y, z, w)+\psi_{4}\left(S_{11}\right)(x, y, z, w) \tag{13}
\end{gather*}
$$

where

$$
\begin{gathered}
S_{11}(y, z)=\left(\nabla_{y} \omega\right) \varphi z-\omega(\varphi y) \omega(\varphi z)+\eta(y) \eta(z) \omega(\Omega)=\left(\nabla_{y} \tilde{\omega}\right) z-\tilde{\omega}(y) \tilde{\omega}(z) \\
\tilde{\omega}=\omega \circ \varphi
\end{gathered}
$$

and Ω is the corresponding vector field of ω with respect to g, i.e. $\omega=g(\Omega, \cdot)$.
From (12) it follows $\rho(y, \xi)=\rho(\xi, y)=\eta(y) \operatorname{Tr}(\nabla \tilde{\omega})$ and for the tensor field S_{11} we have

$$
\begin{gathered}
S_{11}(\xi, y)=\left(\nabla_{\xi} \omega\right) \varphi y+\eta(y) \omega(\Omega), S_{11}(y, \xi)=\eta(y) \omega(\Omega), S_{11}(\xi, \xi)=\omega(\Omega) \\
\operatorname{Tr} S_{11}=\operatorname{Tr}(\nabla \tilde{\omega})+\omega(\Omega), \quad \operatorname{Tr} S_{11}^{*}=-\operatorname{Tr}(\nabla \omega)
\end{gathered}
$$

where $S_{11}^{*}(y, z)=S_{11}(y, \varphi z)$.
Remark 3.1 ([3]). If $\left(M^{3}, \varphi, \xi, \eta, g\right) \in \mathcal{F}_{11}^{0}$, then the 1-form $\omega \circ \varphi$ is closed and consequently the tensor field S_{11} is symmetric.

Let $\left(M^{3}, \varphi, \xi, \eta, g\right)$ be an \mathcal{F}_{11}-manifold. Then from Proposition 1.1 and (13) we obtain

$$
\begin{equation*}
\left\{\psi_{1}+\psi_{2}\right\}(\rho)=\frac{\tau}{2}\left\{\pi_{1}+\pi_{2}\right\}+\psi_{4}\left(S_{11}\right) \tag{14}
\end{equation*}
$$

After two contractions of (14) we find the following two equalities:

$$
\begin{align*}
2 \rho(y, z)= & \rho(\varphi y, \varphi z)-\tau^{\prime \prime} g(y, \varphi z)-\frac{\tau}{2} g(\varphi y, \varphi z) \\
& +2 \operatorname{Tr}(\nabla \tilde{\omega}) \eta(y) \eta(z)+S_{11}(y, z)-\eta(y) S_{11}(\xi, z) \tag{15}\\
\rho(y, \varphi z)+\rho(\varphi y, z)= & \tau^{\prime \prime} g(y, z)-\operatorname{Tr} S_{11}^{*} \eta(y) \eta(z)+\operatorname{Tr}(\nabla \tilde{\omega}) g(y, \varphi z) \tag{16}
\end{align*}
$$

From (16) we compute $\tau^{\prime \prime}=\operatorname{Tr} S_{11}^{*}$. Substituting $\tau^{\prime \prime}$ and $y=\varphi y$ in (16) we have

$$
\begin{equation*}
\rho(\varphi y, \varphi z)=\rho(y, z)+\operatorname{Tr} S_{11}^{*} g(y, \varphi z)-\frac{\tau}{2} g(y, z) \tag{17}
\end{equation*}
$$

Lemma 3.1. Let $\left(M^{3}, \varphi, \xi, \eta, g\right)$ be an \mathcal{F}_{11}-manifold. The tensors $\psi_{1}\left(S_{11}\right)$ and $\psi_{4}\left(S_{11}\right)$ are related as follows

$$
\begin{align*}
\psi_{1}\left(S_{11}\right)(x, y, z, w)= & \psi_{4}\left(S_{11}\right)(x, y, z, w)+\psi_{1}\left(S_{11}(\eta \otimes \xi, \cdot)\right)(x, y, z, w) \\
& +\operatorname{Tr}(\nabla \tilde{\omega}) \pi_{2}(x, y, z, w) \tag{18}
\end{align*}
$$

The proof is a straightforward calculation using formula (3).
Theorem 3.1. The curvature tensor, the Ricci tensor and the scalar curvature on a 3-dimensional \mathcal{F}_{11}-manifold are,

$$
\begin{align*}
& R(x, y, z, w)=\psi_{4}\left(S_{11}\right)(x, y, z, w) \tag{19}\\
& \rho(y, z)=h S_{11}(y, z)+\frac{\tau}{2} \eta(y) \eta(z) \tag{20}
\end{align*}
$$

respectively, where

$$
\begin{equation*}
h S_{11}(y, z)=S_{11}(h y, h z), \quad \tau=2 \operatorname{Tr}(\nabla \tilde{\omega}) \tag{21}
\end{equation*}
$$

Proof: From (15) and (17) we find $\tau=2 \operatorname{Tr}(\nabla \tilde{\omega})$ and

$$
\begin{equation*}
\rho(y, z)=S_{11}(y, z)-\eta(y) S_{11}(\xi, z)+\frac{\tau}{2} \eta(y) \eta(z) . \tag{22}
\end{equation*}
$$

For arbitrary $x \in T_{p} M$ we have $x=h x+\eta(x) \xi$ and it is easy to check $S_{11}(y, z)-$ $\eta(y) S_{11}(\xi, z)=h S_{11}(y, z)$. From the last equality and (22) we obtain (20). Finally, Proposition 1.1, Lemma 3.1 and (20) imply (19).
Because of $\rho(y, z)=\rho(z, y)$ and (20) it is valid the following
Proposition 3.1. For every 3-dimensional \mathcal{F}_{11}-manifold we have

$$
h S_{11}(y, z)=h S_{11}(z, y)
$$

The statement of the last proposition implies immediately
Corollary 3.1. The 1-form w of a 3-dimensional $\mathcal{F}_{11 \text {-manifold satisfies the follow- }}$ ing equality

$$
\left(\nabla_{\varphi^{2} y} \omega\right) \varphi z=\left(\nabla_{\varphi^{2} z} \omega\right) \varphi y
$$

4. Geometric Characteristics of the $\mathbf{3}$-dimensional \mathcal{F}_{i}-manifolds ($i=1,11$)

According to the decomposition of $\mathcal{R}[6]$, from Theorem 2.1 and Theorem 3.1 we have

Proposition 4.1. The class of the 3-dimensional \mathcal{F}_{i}-manifolds for $i=1$ and $i=11$ is ω_{5} and $w \mathcal{R}$, respectively.

Let us recall from [4] that an almost contact manifold with B-metric is said to be a φ-Einstein manifold, or a v-Einstein manifold if $\rho=-\alpha g(\varphi \cdot, \varphi \cdot), \rho=\gamma \eta \otimes \eta$ ($\alpha, \gamma \neq$ const), respectively.
Having in mind the form of the Ricci tensor from Theorem 2.1 and Theorem 3.1, the following propositions are valid

Proposition 4.2. A 3-dimensional \mathcal{F}_{1}-manifold is φ-Einstein iff $\operatorname{Tr}\left(\nabla \theta^{*}\right)=$ const.
Proposition 4.3. A 3-dimensional \mathcal{F}_{11}-manifold is v-Einstein iff $h S_{11}=0$ and $\operatorname{Tr}(\nabla \tilde{\omega})=$ const.

The sectional curvature $K(x, y)=\frac{R(x, y, y, x)}{\pi_{1}(x, y, y, x)}$ with respect to g and R for every nondegenerate section α with a basis $\{x, y\}$ in $T_{p} M$ is known. The following special sections in $T_{p} M, \operatorname{dim} M=2 n+1$: a ξ-section (i.e. $\{\xi, x\}$), a φ-holomorphic section (i.e. $\alpha=\varphi \alpha$) and a totally real section (i.e. $\alpha \perp \varphi \alpha$) are introduced in [5]. Note that totally real sections do not exist in the 3-dimensional case.
Using Theorem 2.1 and Theorem 3.1 we compute the sectional curvatures of a ξ section and a φ-holomorphic section on a 3 -dimensional \mathcal{F}_{i}-manifold ($i=1,11$):

- $i=1$

$$
\begin{equation*}
K(\xi, x)=0, \quad K\left(\varphi x, \varphi^{2} x\right)=\frac{\tau}{2}=-\frac{\operatorname{Tr}\left(\nabla \theta^{*}\right)}{2} \tag{23}
\end{equation*}
$$

- $i=11$

$$
\begin{equation*}
K(\xi, x)=-\frac{S_{11}(h x, h y)}{g(\varphi x, \varphi y)}, \quad K\left(\varphi x, \varphi^{2} x\right)=0 \tag{24}
\end{equation*}
$$

Formulas (23) and (24) imply
Proposition 4.4. Let $\left(M^{3}, \varphi, \xi, \eta, g\right)$ be an \mathcal{F}_{i}-manifold $(i=1,11)$. Then we have:

- $i=1$
i) The sectional curvatures of the ξ-sections are zero
ii) M has constant φ-holomorphic sectional curvatures iff M is a φ-Einstein manifold
- $i=11$
iii) The φ-holomorphic sectional curvatures are zero
iv) The sectional curvatures of the ξ-sections are zero iff M is a v-Einstein manifold.

References

[1] Ganchev G., Mihova V. and Gribachev K., Almost Contact Manifolds with B-metric, Math. Balkanica 7 (1993) 262-276.
[2] Manev M., Properties of Curvatures Tensors on Almost Contact Manifolds with Bmetric, Proc. of Jubilee Sci. Session of V. Levsky Higher Military School, V. Tarnovo 27 (1993) 221-227.
[3] Manev M., On the Conformal Geometry of Almost Contact Manifolds with B-metric, PhD Thesis, Plovdiv, 1998 (in Bulgarian).
[4] Manev M. and Nakova G., Curvature Properties of Some Three-dimensional Almost Contact B-metric Manifolds, Plovdiv Univ. Sci. Works, Ser. Math. 34 (2003) (to appear).
[5] Nakova G. and Gribachev K., Submanifolds of Some Almost Contact Manifolds with B-metric with Codimension Two I, Math. Balkanica 12 (1998) 93-108.
[6] Nakova G., Curvature Tensors on Almost Contact Manifolds with B-metric. In: Trends in Complex Analysis, Differential Geometry and Mathematical Physics, S. Dimiev and K. Sekigawa (Eds), World Scientific, Singapore, 2003, pp 145-158.
[7] Nakova G., Curvature Tensors in the Basic Classes of Real Isotropic Hypersurfaces of a Kähler Manifold with B-metric. In: Trends in Complex Analysis, Differential Geometry and Mathematical Physics, S. Dimiev and K. Sekigawa (Eds), World Scientific, Singapore, 2003, pp 159-167.

