INEQUALITIES AMONG THE NUMBER OF THE GENERATORS AND RELATIONS OF A KÄHLER GROUP

AZNIV KASPARIAN
Department of Mathematics and Informatics, Kliment Ohridski University 5 James Bourchier Blvd, 1126 Sofia, Bulgaria

Abstract

The present note announces some inequalities on the number of the generators and relations of a Kähler group $\pi_{1}(X)$, involving the irregularity $q(X)$, the Albanese dimension $a(X)$ and the Albanese genera $g_{k}(X), 1 \leq k \leq a(X)$, of the corresponding compact Kähler manifold X. The principal ideas for their derivation are outlined and the proofs are postponed to be published elsewhere.

Let X be an irregular compact Kähler manifold, i. e., with an irregularity $q=q(X):=\operatorname{dim}_{\mathbb{C}} H^{1,0}(X)>0$. The Albanese variety $\operatorname{Alb}(X)=$ $H^{1,0}(X)^{*} / H_{1}(X, \mathbb{Z})_{\text {free }}$ admits a holomorphic Albanese map $\operatorname{alb}_{X}: X \rightarrow$ $\operatorname{Alb}(X)$, given by integration $\operatorname{alb}_{X}(x)(\omega):=\int_{x_{0}}^{x} \omega$ of holomorphic $(1,0)-$ forms $\omega \in H^{1,0}(X)$ from a base point $x_{0} \in X$ to $x \in X$. The complex rank of the Albanese map alb_{X} is called an Albanese dimension $a=a(X)$ of X.
A compact Kähler manifold Y is said to be Albanese general if $\operatorname{dim}_{\mathbb{C}} Y=$ $a(Y)<q(Y)$. The surjective holomorphic maps $f_{k}: X \rightarrow Y_{k}$ of a compact Kähler manifold X onto Albanese general Y_{k} are referred to as Albanese general k-fibrations of X. The maximum irregularity $q\left(Y_{k}\right)$ of a base Y_{k} of an Albanese general k-fibration $f_{k}: X \rightarrow Y_{k}$ is called k-th Albanese genus of X and denoted by $g_{k}=g_{k}(X)$. The present note states lower bounds on the Betti numbers $b_{i}\left(\pi_{1}(X)\right):=r k_{\mathbb{Z}} H^{i}\left(\pi_{1}(X), \mathbb{Z}\right)$ of the fundamental group $\pi_{1}(X)$, in terms of the irregularity $q(X)$, the Albanese dimension $a(X)$ and the Albanese genera $g_{k}(X), 1 \leq k \leq a(X)$.
On the other hand, $b_{i}\left(\pi_{1}(X)\right)$ are estimated above by the number of the generators s and the number of the relations r of $\pi_{1}(X)$ and, eventually, by the irregularity $q(X)$, exploiting to this end few abstract results on the group cohomologies.

Proposition 1. Let X be a compact Kähler manifold with Albanese dimension $a \geq 2$, irregularity $q \geq a$ and Albanese genera $g_{k}, 1 \leq k \leq a$. Put

$$
\begin{aligned}
\mu^{2,0} & :=\max \left\{\binom{\max \left\{a, g_{k} ; g_{k}>0,2 \leq k \leq a\right\}}{2}, \delta_{g_{1}}^{0}(2 q-3)\right\}, \\
\mu^{1,1} & :=\max \left\{\binom{a}{2}, 2 a-1, g_{k}-1, \delta_{g_{1}}^{0}(2 q-3) ; g_{k}>0,2 \leq k \leq a\right\}
\end{aligned}
$$

where $\delta_{g_{1}}^{0}$ stands for Kronecker's delta. Denote by $b_{2}\left(\pi_{1}(X)\right):=$ $r k_{\mathbb{Z}} H^{2}\left(\pi_{1}(X), \mathbb{Z}\right)$ the second Betti number of the fundamental group of X and suppose that $\pi_{1}(X)$ admits a finite presentation with s generators and r relations. Then

$$
r-s+2 q \geq b_{2}\left(\pi_{1}(X)\right) \geq 2 \mu^{0,2}+\mu^{1,1}
$$

If F is a free group and R is a normal subgroup of F then Hopf's Theorem is equivalent to the presence of the exact sequence

$$
0 \rightarrow H_{2}(F / R, \mathbb{Z}) \rightarrow H_{1}(R, \mathbb{Z})_{F} \rightarrow H_{1}(F, \mathbb{Z}) \rightarrow H_{1}(F / R, \mathbb{Z}) \rightarrow 0
$$

where $H_{1}(R, \mathbb{Z})_{F}$ stands for the F-coinvariants of $H_{1}(R, \mathbb{Z})$ (cf. [4] or [1]). In particular, for a Kähler group $\pi_{1}(X)$ with s generators and r relations there follows $r-s+2 q \geq b_{2}\left(\pi_{1}(X)\right)$.
The isomorphism $H^{1}\left(\pi_{1}(X), \mathbb{C}\right) \simeq H^{1}(X, \mathbb{C})$ of the first cohomologies of $\pi_{1}(X)$ and X allows to introduce Hodge decomposition $H^{1}\left(\pi_{1}(X), \mathbb{C}\right)=$ $H^{1,0}\left(\pi_{1}(X)\right) \oplus H^{0,1}\left(\pi_{1}(X)\right)$ on the group cohomologies. After constructing an Eilenberg-MacLane space $K\left(\pi_{1}(X), 1\right)$ by glueing to X cells of real dimension ≥ 3, one observes that the complex rank of the cup product of group cohomologies

$$
\zeta_{\pi_{1}(X)}^{i, j}: \wedge^{i} H^{1,0}\left(\pi_{1}(X)\right) \otimes_{\mathbb{C}} \wedge^{j} H^{0,1}\left(\pi_{1}(X)\right) \rightarrow H^{i+j}\left(\pi_{1}(X), \mathbb{C}\right)
$$

dominates the complex rank of the cup product of de Rham cohomologies

$$
\zeta_{X}^{i, j}: \wedge^{i} H^{1,0}(X) \otimes_{\mathbb{C}} \wedge^{j} H^{0,1}(X) \rightarrow H^{i+j}(X, \mathbb{C})
$$

The quantities $\mu^{i, j}$ are lower bounds on $r k_{\mathbb{C}} \zeta_{X}^{i, j}$. They are derived by the means of the cohomological descriptions of a and g_{k}, due to Catanese (cf. [2]). On one hand, $r k_{\mathbb{C}} \zeta_{X}^{i, j} \geq\binom{ a}{i+j}$ for all non-negative integers i, j with $2 \leq i+j \leq a$. On the other hand, $r k_{\mathbb{C}} \zeta_{X}^{i, j} \geq\binom{ g_{k}-i}{j}$ for $0 \leq i \leq j$ and $2 \leq i+j \leq k \leq a$. Further, $r k_{\mathbb{C}} \zeta_{X}^{i, j} \geq(i+j)(q-i-j)+1$ provided $g_{1}=\cdots=g_{i+j-1}=0$. Finally, $r k_{X}^{1,1} \geq 2 a-1$.

Proposition 2. Let X be a compact Kähler manifold whose fundamental group $\pi_{1}(X)$ admits a finite presentation with s generators and r relations. Then the complex rank of the cup products $\zeta_{\pi_{1}(X)}^{i, j}$ and $\zeta_{X}^{i, j}$ are bounded below by

$$
\mu^{i, j}:=\max \left\{\binom{a}{i+j},\binom{g_{k}-i}{j}, \delta_{g_{1}}^{0} \cdots \delta_{g_{i+j-1}}^{0}(i+j)(q-i-j)+1\right\}
$$

where a stands for the Albanese dimension of $X, g_{k}, 1 \leq k \leq a$, are the Albanese genera, $q>0$ is the irregularity, $\delta_{g_{s}}^{0}$ denote Kronecker's deltas and the maximum is taken over the positive Albanese genera g_{k}, labeled by $i+j \leq$ $k \leq a$. The Betti numbers $b_{i}\left(\pi_{1}(X)\right):=r k_{\mathbb{Z}} H^{i}\left(\pi_{1}(X), \mathbb{Z}\right)$ are subject to the inequalities

$$
s r^{k} \geq b_{2 k+1}\left(\pi_{1}(X)\right) \geq 2 \sum_{i=0}^{k} \mu^{i, 2 k+1-i} \text { for } 1 \leq k \leq \frac{a-1}{2}
$$

and

$$
r^{k} \geq b_{2 k}\left(\pi_{1}(X)\right) \geq 2 \sum_{i=0}^{k-1} \mu^{i, 2 k-i}+\mu^{k, k} \text { for } 2 \leq k \leq \frac{a}{2}
$$

The upper bounds on the higher Betti numbers of $\pi_{1}(X)$ are derived by Gruenberg's free resolution of \mathbb{Z} as a $\mathbb{Z}\left[\pi_{1}(X)\right]$-module (cf. [3]).

Acknowledgements

The author is extremely grateful to Tony Pantev for the useful advices and the encouragement.

References

[1] Brown K., Cohomology of Groups, Springer, New York, Heidelberg, Berlin 1982.
[2] Catanese F., Moduli and Classification of Irregular Kähler Manifolds (and Algebraic Varieties) with Albanese General Type Fibrations, Inv. Math. 104 (1991) 263-289.
[3] Gruenberg K., Resolutions by Relations, J. London Math. Soc. 35 (1960) 481-494.
[4] Hopf H., Fundamentalgruppe und Zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942) 257-309.

