Third International Conference on Geometry, Integrability and Quantization June 14–23, 2001, Varna, Bulgaria Ivaïlo M. Mladenov and Gregory L. Naber, Editors **Coral Press**, Sofia 2001, pp 315–317

INEQUALITIES AMONG THE NUMBER OF THE GENERATORS AND RELATIONS OF A KÄHLER GROUP

AZNIV KASPARIAN

Department of Mathematics and Informatics, Kliment Ohridski University 5 James Bourchier Blvd, 1126 Sofia, Bulgaria

Abstract. The present note announces some inequalities on the number of the generators and relations of a Kähler group $\pi_1(X)$, involving the irregularity q(X), the Albanese dimension a(X) and the Albanese genera $g_k(X)$, $1 \le k \le a(X)$, of the corresponding compact Kähler manifold X. The principal ideas for their derivation are outlined and the proofs are postponed to be published elsewhere.

Let X be an irregular compact Kähler manifold, i. e., with an irregularity $q = q(X) := \dim_{\mathbb{C}} H^{1,0}(X) > 0$. The Albanese variety $Alb(X) = H^{1,0}(X)^*/H_1(X,\mathbb{Z})_{\text{free}}$ admits a holomorphic Albanese map $alb_X : X \to Alb(X)$, given by integration $alb_X(x)(\omega) := \int_{x_0}^x \omega$ of holomorphic (1,0)forms $\omega \in H^{1,0}(X)$ from a base point $x_0 \in X$ to $x \in X$. The complex rank of the Albanese map alb_X is called an Albanese dimension a = a(X) of X. A compact Kähler manifold Y is said to be Albanese general if $\dim_{\mathbb{C}} Y = a(Y) < q(Y)$. The surjective holomorphic maps $f_k : X \to Y_k$ of a compact Kähler manifold X onto Albanese general Y_k are referred to as Albanese general k-fibrations of X. The maximum irregularity $q(Y_k)$ of a base Y_k of an Albanese general k-fibration $f_k : X \to Y_k$ is called k-th Albanese genus of X and denoted by $g_k = g_k(X)$. The present note states lower bounds on the Betti numbers $b_i(\pi_1(X)) := rk_{\mathbb{Z}}H^i(\pi_1(X), \mathbb{Z})$ of the fundamental group $\pi_1(X)$, in terms of the irregularity q(X), the Albanese dimension a(X) and the Albanese general $g_k(X)$, $1 \le k \le a(X)$.

On the other hand, $b_i(\pi_1(X))$ are estimated above by the number of the generators s and the number of the relations r of $\pi_1(X)$ and, eventually, by the irregularity q(X), exploiting to this end few abstract results on the group cohomologies.

Proposition 1. Let X be a compact Kähler manifold with Albanese dimension $a \ge 2$, irregularity $q \ge a$ and Albanese genera g_k , $1 \le k \le a$. Put

$$\mu^{2,0} := \max\left\{ \begin{pmatrix} \max\{a, g_k; g_k > 0, 2 \le k \le a\} \\ 2 \end{pmatrix}, \, \delta^0_{g_1}(2q-3) \right\},$$
$$\mu^{1,1} := \max\left\{ \begin{pmatrix} a \\ 2 \end{pmatrix}, \, 2a-1, g_k-1, \, \delta^0_{g_1}(2q-3); \, g_k > 0, \, 2 \le k \le a \right\}$$

where $\delta_{g_1}^0$ stands for Kronecker's delta. Denote by $b_2(\pi_1(X)) := rk_{\mathbb{Z}}H^2(\pi_1(X),\mathbb{Z})$ the second Betti number of the fundamental group of X and suppose that $\pi_1(X)$ admits a finite presentation with s generators and r relations. Then

$$r-s+2q \ge b_2(\pi_1(X)) \ge 2\mu^{0,2}+\mu^{1,1}$$
.

If F is a free group and R is a normal subgroup of F then Hopf's Theorem is equivalent to the presence of the exact sequence

$$0 \to H_2(F/R, \mathbb{Z}) \to H_1(R, \mathbb{Z})_F \to H_1(F, \mathbb{Z}) \to H_1(F/R, \mathbb{Z}) \to 0$$

where $H_1(R,\mathbb{Z})_F$ stands for the *F*-coinvariants of $H_1(R,\mathbb{Z})$ (cf. [4] or [1]). In particular, for a Kähler group $\pi_1(X)$ with *s* generators and *r* relations there follows $r - s + 2q \ge b_2(\pi_1(X))$.

The isomorphism $H^1(\pi_1(X), \mathbb{C}) \simeq H^1(X, \mathbb{C})$ of the first cohomologies of $\pi_1(X)$ and X allows to introduce Hodge decomposition $H^1(\pi_1(X), \mathbb{C}) = H^{1,0}(\pi_1(X)) \oplus H^{0,1}(\pi_1(X))$ on the group cohomologies. After constructing an Eilenberg-MacLane space $K(\pi_1(X), 1)$ by glueing to X cells of real dimension ≥ 3 , one observes that the complex rank of the cup product of group cohomologies

$$\zeta_{\pi_1(X)}^{i,j} \colon \wedge^i H^{1,0}(\pi_1(X)) \otimes_{\mathbb{C}} \wedge^j H^{0,1}(\pi_1(X)) \to H^{i+j}(\pi_1(X),\mathbb{C})$$

dominates the complex rank of the cup product of de Rham cohomologies

$$\zeta_X^{i,j} \colon \wedge^i H^{1,0}(X) \otimes_{\mathbb{C}} \wedge^j H^{0,1}(X) \to H^{i+j}(X,\mathbb{C}) \,.$$

The quantities $\mu^{i,j}$ are lower bounds on $rk_{\mathbb{C}}\zeta_X^{i,j}$. They are derived by the means of the cohomological descriptions of a and g_k , due to Catanese (cf. [2]). On one hand, $rk_{\mathbb{C}}\zeta_X^{i,j} \ge \begin{pmatrix} a \\ i+j \end{pmatrix}$ for all non-negative integers i, j with $2 \le i+j \le a$. On the other hand, $rk_{\mathbb{C}}\zeta_X^{i,j} \ge \begin{pmatrix} g_k - i \\ j \end{pmatrix}$ for $0 \le i \le j$ and $2 \le i+j \le k \le a$. Further, $rk_{\mathbb{C}}\zeta_X^{i,j} \ge (i+j)(q-i-j)+1$ provided $g_1 = \cdots = g_{i+j-1} = 0$. Finally, $rk_X^{1,1} \ge 2a - 1$. **Proposition 2.** Let X be a compact Kähler manifold whose fundamental group $\pi_1(X)$ admits a finite presentation with s generators and r relations. Then the complex rank of the cup products $\zeta_{\pi_1(X)}^{i,j}$ and $\zeta_X^{i,j}$ are bounded below by

$$\mu^{i,j} := \max\left\{ \begin{pmatrix} a \\ i+j \end{pmatrix}, \begin{pmatrix} g_k - i \\ j \end{pmatrix}, \delta^0_{g_1} \cdots \delta^0_{g_{i+j-1}} (i+j)(q-i-j) + 1 \right\}$$

where a stands for the Albanese dimension of X, g_k , $1 \le k \le a$, are the Albanese genera, q > 0 is the irregularity, $\delta_{g_s}^0$ denote Kronecker's deltas and the maximum is taken over the positive Albanese genera g_k , labeled by $i+j \le k \le a$. The Betti numbers $b_i(\pi_1(X)) := rk_{\mathbb{Z}}H^i(\pi_1(X), \mathbb{Z})$ are subject to the inequalities

$$sr^k \ge b_{2k+1}(\pi_1(X)) \ge 2\sum_{i=0}^k \mu^{i,2k+1-i}$$
 for $1 \le k \le \frac{a-1}{2}$

and

$$r^k \ge b_{2k}(\pi_1(X)) \ge 2\sum_{i=0}^{k-1} \mu^{i,2k-i} + \mu^{k,k}$$
 for $2 \le k \le \frac{a}{2}$.

The upper bounds on the higher Betti numbers of $\pi_1(X)$ are derived by Gruenberg's free resolution of \mathbb{Z} as a $\mathbb{Z}[\pi_1(X)]$ -module (cf. [3]).

Acknowledgements

The author is extremely grateful to Tony Pantev for the useful advices and the encouragement.

References

- [1] Brown K., Cohomology of Groups, Springer, New York, Heidelberg, Berlin 1982.
- [2] Catanese F., Moduli and Classification of Irregular Kähler Manifolds (and Algebraic Varieties) with Albanese General Type Fibrations, Inv. Math. 104 (1991) 263–289.
- [3] Gruenberg K., Resolutions by Relations, J. London Math. Soc. 35 (1960) 481-494.
- [4] Hopf H., Fundamentalgruppe und Zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942) 257–309.