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ON THE GEOMETRY OF RED BLOOD CELL
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Abstract. The differential geometry of a normal red blood cell is treated 
using the Cassinian oval for modelling its profile. In this connection 
an explicit parametrization via Jacobian elliptic functions of the usual 
polar coordinates is found. The first and the second fundamental forms, 
and correspondingly, the Gaussian, mean, and principal curvatures, are 
derived. The integrals determining the volume, area, cross-section area, 
and circumference of a red blood cell are evaluated analytically and ex­
pressed in a form relevant to the sphere geometry via some correction 
factors. The free elastic energy U, associated with the outer bilayer 
membrane of the cell is integrated and its scale dependence is estab­
lished. A relation between U and the surface area correction factor is 
determined. Approximate formulae, using elementary functions, that 
should be directly applicable to experimental data are developed.
Plots of these dimensionless parts of volume, area, cross-section area, 
and circumference are obtained. The sphericity index, homogeneity 
index, and volume/area ratio associated with the red cell geometry are 
derived in approximate forms as well.

1. Introduction

Red blood cells, or erythrocytes, serve to deliver oxygen to cells via the protein 
hemoglobin. The description of the form of the Red Blood Cell (RBC) is a 
subject of a research interest for a long time (cf. Funaki [6] for the early 
history of the subject). The most precise description now available is that 
given by the equation of the oval of Cassini (see e. g. Funaki [6], Vayo [20], 
Canham [1], and Figs 1 and 2). The main difficulty that remain unsolved 
is that related to the complexity of the mathematical expressions describing 
quantities of geometric interest. Some preliminary results in this field are 
provided by Funaki [6] and Vayo [20]. For a researcher that is not prepared
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28 B. Angelov and I. Mladenov

and equipped with a specialized software capable to deal with elliptic functions 
or numerical integration, it is a frustrating task to perform calculations of RBC 
geometrical parameters. Furthermore, the complex expressions may obscure 
important qualitative insights on the RBC geometry.

Figure 1. RBC shapes at various e 
See Sect. 2 for explanation of curves

Figure 2. A half section of RBC drawn using polar coordinates via elliptic functions

The purpose of this study is to further investigate the expressions of RBC geom­
etry and derive RBC geometrical parameters by applying three new approaches: 
(1) choosing an appropriate coordinate system, (2) study the relevance of the 
biconcave shaped RBC form to that of a sphere, and (3) approximating the 
exact expressions to such that are usable under laboratory conditions. Here, the 
original formulae are derived for the first and second fundamental forms which 
specify all kind of curvatures. Having the precise expressions for surface area, 
volume, cross-section area, and circumference of RBC new expressions are 
derived which demonstrate their relationship with the corresponding parame­
ters for the ordinary sphere. The exact formulae of the above quantities are 
approximated to ones suitable for easy practical calculations avoiding the need
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of an expensive and sophisticated computer hardware and software.
According to the physical models presented in Canham [1] and Deuling and 
Helfrich [4] we accept that the geometrical shape of RBC follows the minimiza­
tion of the elastic energy associated with deformations of the outer membrane 
of RBC and leads to the geometrical form described by the Cassinian oval. 
Thus Canham [1] expresses the elastic energy U as an integral of a special 
function in the principle curvatures over the membrane surface. Actually its 
analytical evaluation was considered to be quite difficult and therefore was 
done numerically.
Our study shows that the geometrical form of RBC based on the Cassinian oval 
could be determined by experimental measurements of just two parameters, e. g. 
example its area and volume. At variance, previous publications (cf. Canham 
[1], Svetina and Zeks [19] and Hwang and Waugh [9]) have considered as 
insufficient that two such geometrical parameters could determine exactly the 
RBC form. However, due to practical reasons, the most precise measurements 
turns out to be that of the diameter d and the thickness r  of RBC. Therefore 
we consider these experimental parameters as more appropriate input data in 
the calculations compared to the area, volume and thinness of RBC. We find 
that knowing d and r  all other geometrical quantities could be easily calculated 
using the derived approximate expressions in Table 1.

2. Explicit Coordinate Presentations of RBC Shape

Following the tradition which can be traced in [1,4,6] and [20], we consider 
the geometrical model of the RBC based on the Cassinian oval (see Fig. 1). 
This remarkable plane curve is defined as a geometrical locus of the points 
for which the product of the distances from two fixed points F i and F 2 is a 
constant c2, when the distance (F l5 F 2) between F 1 and F 2 is 2a. In the X O Z  
plane it is given by the equation

( X 2 +  Z 2 +  a2)2 -  4a2X 2 = c4 . (2.1)

It is obvious that the above curve is symmetric with respect to both axes and the 
origin. Actually its shape depends on the precise relationship of the geometrical 
parameters a and c. Further on we will assume that a < c < ay/2 (this case 
is presented by the curve 3 in Fig. 1). The two cases c =  ay/ 2 and c > ay/ 2 
produce ellipse like figures illustrated by curves 4 and 5, and the case c = a 
gives another well-known curve (2) — the Bernoullian lemniscate

( X 2 +  Z 2)2 =  2a2( X 2 -  Z 2) , (2.2)

while the final case a > c reduces to two disjoint ovals (curve 1 in Fig. 1).



30 B. Angelov and I. Mladenov

Cassini has proposed the fourth degree curve (2.1) in an attempt to describe 
more properly the planetary motion. Both (2.1) and (2.2) are concrete alge­
braic curves. The general meaning of the last notion is that the rectangular 
coordinates X, Z  of the points on the curve C in the plane satisfy an algebraic 
equation

F ( X ,Z )  = 0, (2.3)

where F(X ,  Z) is a polynomial function in its variables.
As we have already mention all considerations in this work concerns the bicon­
cave disk shape. The later is formed after rotating the contour of the Cassinian 
oval around the vertical axis. In Cartesian coordinates the RBC surface is 
described by the equation

(a2 +  x 2 +  y2 +  z 2)2 — 4a2 (x 2 +  y2) =  c4 . (2.4)

This implicit representation of RBC shape is well-known but from a practical 
point of view it is nothing more than a definition of a surface in R3. However, 
in order to describe such object in differential geometry one needs of explicit 
coordinates, i. e. a triple of smooth functions:

x(u,v),  y(u,v), z{u,v) (2.5)

of two parameters (u, v) defined in some domain D G R2 and which taken 
together specify the vector x G R3

x =  x[u, v] = x(u, v)i +  y(u, u)j +  z(u, u )k . (2.6)

where i , j ,k  are the unit vectors along coordinate axes. When u and v run 
in D the pitch of x moves on the surface S. Below we provide several such 
parametrizations of RBC surface because each of them is appropriate in a 
different context.

2.1. Polar Coordinates

Let us introduce the standard polar coordinates in the plane

x = X  cos <p , y =  X  sin 0 , X  G R+, 4> G [0, 2tt] . (2.7)

Inserting these coordinates into (2.4) and solving it for z one gets

z =  ± 7  Vc4 +  40,2X2 - a 2 - X 2 . (2.8)

The range interval for X  is [0, \Ja1 +  e2] and the positive(negative) sign cor­
responds to that part of the surface which is above(below) the polar plane.
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2.2. Spherical Polar Coordinates

The change of variables in this case is:

x  =  r sin 0 cos <fi 
y =  r sin 0 sin <fi
z = r cos 0 , r  G M+, 9 G [0, tt\ .

and after some work the surface equation (2.4) takes the form

r 4 +  2a2r 2 cos 20 +  a4 =  c4 . (2.9)

Again it turns out convenient to solve last equation for z = r cos 0 which this 
time returns

J  c4 — (a2 — r 2)2 ______  ______
z = ±  —-------------------- , r  G [Vc2 — u2, Vu2 +  c2]

with the same meaning of signs, and respectively

(2.10)

x  =
yj (a? +  r 2)2 — c4

2a
COS0 ,

y/(a2 +  r 2)2 — c4
y =  —-------------------- sin0 . (2.11)

2a

2.3. Polar Coordinates via Elliptic Functions

Before presenting them we need to introduce some new notation as follows:

1 o 12 , 2 , 2  2x + y  + z = p , X = X  =c2 + a2 ’

so that the equation (2.4) becomes

4a2A2/r2̂ 2 = (1 — A2p2)(l + p 2p 2).

c2 — a2
(2.12)

(2.13)

Elsewhere it has been proven (cf. Mladenov [14]) that the uniformization of 
the algebraic curve

w2 = ( i -  a2c2)(i + m2C2)
is given by the Jacobian elliptic functions as follows

1 sn (Z A2 +  p 2r  +  F, k)
C(t ) = VA2 +  p 2 dn(y/X2 + p2r  + F, k )

and

, X d cn(v/A2 +  p?T +  F, k )w(r) =  — C(t ) =  + +

(2.14)

(2.15)

(2.16)



32 B. Angelov and I. Mladenov

and where the modulus k of these functions is given by
i,2

k2 = F c2 +  a2
A2 +  p 2 2c2

(2.17)

while F  is an unspecified for the moment real constant.
Besides, from the very beginning we have assumed as granted a < c < a \ /2, 
and this ensures that the modulus of the elliptic functions k is less than one 
(as should be), which means also that we can introduce the complementary 
modulus k by the usual formula

'  A2 c2- “2 <2, 8,k = l —k =
A2 +  p 2 2c2

Now, we can come back to the problem in question, namely that of uniformiza- 
tion of (2.13).
In order to achieve this we assume that the functions p(u) and z{u) are of the 
form

p(u) =
sn(au  +  F, k )

and
\ / \ 2 +  p2 dn(au +  F,k)

. d . a cniau  +  F, k)
du p -y/A2 +  p 2 dn2(uu +  F, k )

(2.19)

(2.20)

Entering with (2.19) and (2.20) into (2.13) and taking into account the funda­
mental functional relationships among Jacobian elliptic functions [11], i. e.,

sn2(u, k) +  cn2(u, k) = 1 ,
(2.21)

dn2(u, k) =  1 —  k2sn2{u, k) =  cn2(u, k) +  k2sn2(u, k) ,

one gets a simple equation about a that can be easily solved and gives
c

a  =
aV 2 '

(2.22)

Up to now the real parameter F  has not been determined. This can be remedied 
by combining some geometrical and analytical considerations which produce 
the following transcendental equation

dn(F, k) = 4 =  . (2.23)
v 2

Actually, there is not a need to solve it explicitly at this moment as for the 
relevant computations one can use instead the fundamental identities (2.21) in 
combination with the existing addition formulae for Jacobian elliptic functions
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(cf. [11]). The resulting expressions are enough complicated and will be not 
reproduced here. Anyway, we will consider further on F  as known quantity.
Taking into account that Cassinian oval is closed, some periodicity condition 
should be present as well. Due to the mirror symmetry with respect to the 
horizontal and vertical axes the appropriate choice for the period is 4T, where 
T  is easily found to be given by the formula

T = F 1

and where

K(k) = F ^ , k j  = 

is the complete elliptic integral of the first kind.
As a result we have obtained a parametrization of the surface of revolution 
(2.4)

) - F
7

(2.24)

dip
7t/2

/ - __________ ,
o y  1 — k2 sin2 ip

(2.25)

x[u,v\ = \Jp2(u) — Z 2 ( U) COS V  ,

y[u,v\ = \Jp2(u ) — z2(u) sin v , 
z[u, v\ =  z(u) ,

(2.26)

where v G [0, 27t] , u  G [0, 2T] with p(u), z(u) given by (2.19) and (2.20). As 
a free byproduct we have also the uniformization of the Cassinian oval (2.1) 
(for more details see Mladenov [15])

X  = x[u, 0] =  x ( u ) , Z  = z ( u ) . (2.27)

3. Fundamental Forms of RBC Surface

Let S' be a smooth surface and x  =  x[u, v] is its vector equation such that 
x u x x„ /  0.
A quadratic differential form

I  =  I[u, v] = ds2 = dx2 =  dx. dx (3.1)

which defines the length element on S  is called the first fundamental form of 
the surface. We have

dx =  x M du +  x„ dr>, dx2 =  xM.x„ du2 +  2x„.x„ dudr> +  x„.x„ dv2. (3.2)
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Introducing the standard notation from differential geometry textbooks (see 
e. g. [16])

E  = E[u,v\ = x„.x„ =  x 2 ,
F  = F[u,v\ = xM.x„ , (3.3)
G = G[u, v] =  x„.x„ =  x 2 ,

the first fundamental form can be rewritten succinctly as follows

I  = E d u 2 + 2 F d u d v  + G dv2 . (3.4)

Of no less importance for the theory of the surfaces is the second fundamental 
form

I I  = II[u, v} = d2x .n  (3.5)

where d2x is the second differential of the radius-vector

d2x =  x u„ du2 +  2xtttl du du +  x„„ du2 +  x„ d2u +  x„ d2u , (3.6)

and n  is the normal to S  vector of unit length

: x„
(3.7)n  =  n [u, v\ =

x„ x x„
x„ x x„

(3.8)

The standard notation for the coefficients of the second fundamental form are

L = L[u,v\ = x„u.n ,
M  = M[u , v\ =  x u„ .n ,
./V =  iV[tt, v\ =  xOT .n ,

so that

I I  = L d u 2 + 2 M d u d v  + N d v 2 .

By definition the normal curvature kn in direction ( du : du) is

I I  L d u 2 + 2M dudv + N d v 2

(3.9)

E d u 2 + 2F d u d v  + G d v2 ’
(3.10)

and the directions at which it attains extremal values (maximum and minimum) 
are called principal.
Remark: If the coordinate curves coincide with the principal directions then

F = M  = 0, (3.11)
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and the respective curvatures of these directions can be found by the formulae 
(cf. [7])

L N
ki =  — , k2 =  — . (3.12)

We have found that the spherical polar coordinates and the polar coordinates 
expressed via Jacobian elliptic functions are more appropriate for the purposes 
of differential geometric considerations as they lead to the most simple formulae 
in this context. Let us remark also that actually r = p, a fact which was implicit 
in our considerations up to now. Applying the recipes given above one can 
arrive at the following results:

2 „4
E  =

2c p
(,p2 +  a2)2 -  c4 ’

F = 0, G =

„ ( V + * - , * )
(p2 +  a2)2 — c4 

and respectively

(p2 +  a2)2 — c4
ï ^ 2 ’

(p2 -  a2) ((p2 +  a2)2 -  c- 

4a2c2p

(3.13)

k i =
3p4 +  a4 — c 

2c2 p3
ko =

p2 — a2 
c2p

(3.14)

Classical differential geometry operates also with other important notions which 
are of immediate interest for us. These are the Gaussian curvature

K  = k i . k 2 =

the mean curvature

H  =

(p2 -  a2) (3p4 +  a4 -  c4) 
2c4 p4

kx +  k 2 (p2 -  a2)2 +  4p4—c4
4 c2p'

and the surface area element

(3.15)

(3.16)

dA = VEG — F 2 du du =  VEG  du du =  °n  p2 du du . (3.17)
a v 2

Remark: The principal curvatures can be expressed in terms of K  and H  as 
well, and the precise relationships are

kx =  k + = H  + V H 2 -  K , k2 =  k_ =  H -  V H 2 - K ,  (3.18)

with selfexplanatory meaning of the subscript indices. Besides, it should be 
noted also that kx and k2 are the principal curvatures along the meridians and 
parallels of latitude respectively.
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4. Geometric Quantities of RBC

By both analytical and numerical reasons it turns out more convenient to work 
instead of original variables a and c, with the dimensionless ratio e = a /c  and 
c. All formulae are expressed in the form relevant to the sphere of radius c, 
i. e. the respective result for this sphere multiplied by a correction factor that

is dependent on ajc  ratio. The range of £ is
1

v/2 ’
The importance of these

geometric quantities is discussed elsewhere (see e. g. Funaki [6] or Vayo [20]).

4.1. Diameter and Thickness

The diameter d of RBC expressed via (a, c) or (c, e) is

d = 2V a2 + c2 = 2cV l + £2 • (4.1)

The thickness denoted by r  =  2zmax is attained at x(zmax), where

m̂ax 02 a
and in order that this is a real coordinate one should have the preassumed 
inequality ay/ 2 > c. The last obvious geometric characteristic of the Cassinian 
oval is its thinness given by t = 2zmin at x(zmin) =  0,

2  ̂ 5 (̂^max) œ z-2 =max
V  4a4 — C4 

2 a
(4.2)

=  y/c2 — a2 = cy/l — (4.3)

The diameter and thickness can be measured experimentally using photographed 
red cell profiles or electron micrographs [5]. The useful links between them 
and the mathematical constants a, c are given by the formulae

a =
y/d2 +  r 2 — r

£ = C = £T .

(4.4)

The choice of d and r  as a set of sufficient experimentally measurable quantities 
was made on the basis of the smallest errors in comparison with other potential 
choices. Actually, the experimental errors when measuring d and r  are less 
than 5% as reported in [2]. Relying on (4.4) and (4.1) one easily find the 
relation between d and r  to be

d =  2rey/l +  £2 . (4.5)
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Since £ varies between 

y/3 r, 2y/2 r  .

and 1,
V2

the range of d is in the interval

4.2. Volume

The volume of RBC is obtained by combining the shell method and the polar 
coordinates (2.7) which produce the integral

a/<72+C2
Volume =  V = 4-7T J X z ( X )  d X , (4.6)

The result is

V= - T " ?V{ e ) , (4.7)

where the dimensionless correction factor V(e) is

. . VI — e2 (1 +  2e2) 3arccos(l — 2e2
'  {£) A 8e

(4.8)

Figure 3 shows the plot of V(e) vs. e. In contrast to other quantities considered 
below, the volume has inflection. The difference between minimal and maximal 
values is smaller than the other geometric quantities have.

Figure 3. Volume correction vs. e (curve 1) Figure 4. Area correction vs. e (curve 1) 
and its approximation (curve 2) and its approximation (curve 2)
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4.3. Surface Area

Many important physiological processes performed by RBC, and especially the 
gas exchange, depend on the magnitude of its surface area. Relying this time 
on the spherical polar coordinates (2.9) it can be written as the integral

Area =  A = An / X  ds(X)  = An / psin(0) ds(p) , 0 e [O, 7t/ 2], (4.9)

where the infinitesimal arclength ds(p) along the Cassinian oval (2.1) is found 
by Matz [13] to be

Actually this result can be derived much more easily if one makes use of the 
parametrization given by (2.10) and (2.11). Performing the integration we have

Here F (^ , k) and E(ïp,k) denote the first, and respectively the second kind 
of incomplete elliptic integrals. Their definition and properties can be found 
e. g. in Jahnke etal. [11]. Figure 4 shows the plot of A(s) vs. e9 which is 
obviously a monotically increasing function of e.

4.4. Cross Section Area

Due to the rotational symmetry of the RBC we were able to reduce the evalua­
tion of its volume and area to single integration. In the case of the cross-section 
area it is a matter of definition to write

\ / a 2+ c 2 a/  a 2+ c 2

0

2 c2p2 dp
(4.10)

A = 4-77c2A (e ) . (4.11)

with a correction factor

(4.12)

a/<22+C2
z(X)  d X ,

o
Cross Section Area =  A c = 4 (4.13)
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and to obtain

A c = ttc2A c (£) (4.14)

with a correction factor
. , , 2E(e2)

A c (e) = , (4.15)

where E(k)  =  E ( tt/ 2 , k) is the complete elliptic integral of the second kind. 
Figure 5 shows the plot of A c {e) vs. e. In contrast to the surface area, the 
cross-section area correction decreases when e approaches the right end of its 
interval of definition.

Figure 5. Correction of cross section 
area

Figure 6. Correction of cross section 
length

4.5. Length of Cross Section

The circumference of the Cassinian oval can be obtained by performing the 
integration

Circumference =  L =  / ds = 2ticL{s ) (4.16)

where the infinitesimal arclenght ds along the red cell contour (2.1) is specified 
in (4.10) and the correction factor is

L{e) = F i ( b  b 1*™)
4vTT (4.17)

Here 2F i (ot,ß, 7 , m) is the non-degenerated Gauss hypergeometric function
2e

with parameters a = 1/4, /? =  1/2, 7 =  1 and m(e) =  m  =  ------ - is its
1 + £2

argument. Figure 6 shows the plot of L{e) vs. e. When e approaches 1, the 
circumference factor increases rapidly.



40 B. Angelov and I. Mladenov

5. Elastic Free Energy of RBC Outer Membrane

According to Canham [1] the elastic energy of bending is

D
U = + +  k2 _) dA (5.1)

where D  is the bending rigidity constant. Integration (up to the scaling fac- 
D

tor — ) results in:
2

28 1r/(s )=_ . - - ^ 8+_ - i2̂ r  +

where ip called amplitude, is defined by

32\/2
TT£\E(k) — E(<p, k)\ (5.2)

ip = am(F, k ) , F = F  (ip, k) = f  —,
o V

d-0

1 — k2 sin2 ip
(5.3)

and

k2 =
1 +  é

Remark: The last equation does not mean that F  from (2.23) and the incom­
plete elliptic integral F(ip,k) are identical, but just provides a definition of  
the amplitude tp.
Graphically 17(e) is plotted in Fig. 10. Toward e =  1 its value is almost 
duplicated.
The surface area A  can be obtained also by integration of \JEG and this gives

2 7T 2 T
A = 47rc2A(s) = J dA =  J dv J VEG  d u , (5.4)

o o
with

(e2 -  1) y/2
=  1 +  ------ — +  —

A(S) =  1 +  2i ^  T  + e 1m  ~ E{ip’k) 1 ’
(5.5)

and where use has been made of (3.17), (2.19) and (2.24). The relation between 
U(e) and A(e) was found to be:

(7(e) =  -  7T [7 +  8 (A(e) — 1) e2] H------ ---------- - T  (5.6)

This demonstrates the e dependence of the free elastic energy and emphasize 
the importance of the form in comparison with the size of RBC.
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Remark: Recently Liu et al. [12] have shown, that using elastic energy func­
tion which depends on the so called Helfrich spontaneous curvature c0, the 
biconcave shape of RBC turns out to be with a minimal elastic energy attained 
at c0 =  1.2. This shape corresponds to the one described by a Cassinian oval 
with e =  0.843. Further investigation on correspondence between Cassinian 
oval and shapes resulting from Helfrich energy minimization procedure is quite 
tempting.

6. Approximate Formulae

The next step towards simplification of the geometric expressions is to approx­
imate the e dependent parts. The main idea is to eliminate the elliptic functions 
that appear in the exact formulae. Procedures used for numerical approximation 
are presented elsewhere in the standard texts on numerical methods like [17].

Table 1.

Q uantity E x p ressio n A p prox im ation

V olum e ^ ttc3 V ( s ) V ( s )  =  (2 .8 8  -  1 .7e )e

S urface  A rea 47 T c2A ( s )
2 .88  — 1 .7e 

^  “  2 .82  -  1.986:

A rea  o f  C ross S ection 7T C2A C (s)
. /N  1 . 0 5 -  0 .9 4 ^  

A c i c > ~  1 — 0 .8 3 s

C ircum ference 27TcL ( s )
T , x 2 . 5 - 2 . 3 5  

L { £ )  =  10 -  9 .31*

E lastic  F ree  E nergy f m e )
151 .3  -  148 .235  

“  10 -  1 7 .2 1 s  +  7 .2 5 s 2

S pheric ity \ / 3&t  V  3 — [V (£)] 3
[ V { s ) \ l  _  1 0 .3 8 - 8 . 8 s

v3b7F A  “  A ( e ) A ( s )  ~  10 -  8 s

H om ogene ity
1 A  t  [ y l( e ) ] f  

6 y 5  V  ~  V ( e )

[A (e)] 1 0 .9 5  -  0 .7 5 s  

V { e )  ~  1 -  0 .8 6 s

V olum e/ A rea
V  _  c V ( e )  

A  3 A ( e )
^ 4  =  (2 .8 2  -  1 .9 8 s )s  
A { e )

C ircu m feren ce /A rea
L  _  1 L ( s )  

A  2c A ( e )
L (s )  _  29 -  2 8 .3 8 s  

A { s )  ~  1 0 0 - 5 0 s - 4 7 s 2

V olum e C ircum ference  

A rea  A rea

V L  1 V ( s ) L ( s )
A 2 ~  6 [A(e ) }2

=  0-341 -  0 .1 6 8 s
[ A { e ) Y
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The above Table 1 presents the approximated formulae within the valid range
where the error of approximation is near 1%. The eof e G 0.998

v/2
dependent factor in the volume expression contribute nearly 20%. Within 2% 
accuracy V(e)  =  1.2. It is interesting to note that the volume has maximum at 
£ «  7/8. On the basis of these approximations one can easily derive relations 
between any two listed items. This is almost obvious because if any two of 
them are known, i. e. their values were measured with enough precision, the 
rest can be obtained also using these approximations.

Figure 7. Sphericity index vs. £ (cf. [1]) Figure 8. Volume/area vs. £

Figure 9. Homogeneity index vs. e Figure 10. Free energy vs. e
(cf. [10])

Figures 8 and 12 represent e dependence of V ie) jAie), and Lie) j Aie) respec­
tively.
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Figureil. V L / A 2 vs. £

d  ( /jm)

Figure 13. Constant volume curves 
V(d,r)

Figure 12. Circumference/area vs. e

d  ( /jm)

Figure 14. Constant area curves A(d,r)

7. Concluding Remarks

Experimental measurements of the diameter and the thickness of RBC reveal 
ranges from 6.9 to 9.3 //m. and from 2.4 to 3.7 //in respectively [2], In Figs 13 
and 14 (left-up corners) are represented the possible volumes and surface areas 
as functions of c, and e, or what is the same, as functions of d and r . The 
minimal volume and surface area are observed when d = 6.9 fim and r  =  
2.44 fira. The maximal values are achieved when d = 9.3 /im and r  =  3.7 (ini. 
The parallel curves there represent equal volumes or surface areas. They vary 
from 73 to 200 //m:i for the volume and from 104.7 to 193.3 //nr’ for the surface 
area. Lower right parts of these graphics are empty since such combination of 
d’s and r ’s could not exist due to the requirement e < 1. Calculations of the
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ranges of c and £ result in the interval from 2.44 to 3.41 /un for c, and from 
0.747 to 1 for e.
In Figures 7, 9 and 11 are shown various indices which are dimensionless and 
indicate the relevance of the RBC form to the sphere.

Appendix

Majority of research in the field of Biophysics is devoted to the investigation of 
molecules of biological interest. Fortunately all of the biological molecules are 
polymers and can be divided in four major groups. Namely, these groups are 
nuclear acids, proteins, lipids, and sugars [8]. Our contribution here considers 
lipids. Their unique property is that they form periodic phases when mixed 
with water. The lipid molecules do not really mix with water molecules, but 
arrange to built well defined separation walls, the so called interfaces.
Development of power X-ray diffraction techniques, especially X-ray syn­
chrotron radiation, drive the development of the subject of lipid/water polymor­
phism [18]. Another physical experimental method giving structural informa­
tion is the magnetic resonance. By these experimental techniques it was found 
that lipid/water phases can be of one-, two-, or three-dimensional periodicity, 
and that they are kind of liquid crystals.
Also unique property is that by simple variation of the temperature or com­
position of the system, the number of phases which lipid/water system pass 
exceeds the number of possible phases of any other kind of molecules known. 
This makes lipid/water phases an attractive object of research in the field of 
structural phase transitions. From theoretical physics point of view the theory 
that describes lipid/water phase is the statistical mechanics complemented by 
the mechanics of elastic continuous media. According to the Landau theory of 
phase transitions, it is possible to describe a given transition by introducing the 
so called order parameter(s), and on this base to find the minimum of the free 
energy of the thermodynamic system, where the system is supposed to have an 
equilibrium. Because of the presence of the interfaces between lipid and water 
molecules the principal curvatures of these interfaces are found to be the most 
appropriate order parameters. Again there was a good surprise that lipid/water 
interfaces prefer to have constant mean curvature for all the single equilibrium 
phases. A particular case is when the mean curvature is zero, i. e., lipid/water 
interface is described by a minimal surface [3].
At the next level of specialization, we fix our attention to the outer membrane 
of RBC. This membrane originates from the family of one-dimensional peri­
odic phases, called lamellar. The membrane is constituted of two lipid layers 
surrounded by water. The involved lipid molecules have electrostatic polar



On the Geometry of Red Blood Cell 45

and non polar parts. They orient themselves with the polar part toward wa­
ter, just like dipole in an external E M  field. The diameter of RBC is nearly 
8 /im, which compared to 15-20 nm thickness of the bilayer membrane, make 
it almost locally flat surface.
The form of the RBC is given by the contour of the outer membrane. As 
investigated thoroughly, curvatures play a vital role in describing the behavior 
of cell membranes, model lipid bilayers, lipid/water phases, etc., and the results 
presented here give just another example.

Acknowledgement

This work was partially supported by the National Science Fund of the Bul­
garian Ministry of Education and Science, Grant No F-644/1996.

References

[1] Canham R, The Minimum Energy of Bending as a Possible Explanation of the 
Biconcave Shape of the Human Red Blood Cell, J. Theor. Biol. 26 (1970) 61-81.

[2] Canham R and Burton A., Distribution of Size and Shape in Population of Normal 
Human Red Cells, Circulation Res., 22 (1968) 405-416.

[3] David R, Geometry and Field Theory of Random Surfaces and Membranes, In: 
Statistical Mechanics of Membranes and Surfaces, Nelson D, Piran T. and Wein­
berg S. (Eds), World Scientific, Singapore 1989.

[4] Deuling H. and Helfrich W., Red Blood Cell Shapes as Explained on the Basis of 
Curvature Elasticity, Biophys. J. 16 (1976) 861-868.

[5] Evans E. and Fung Y., Improved Measurements of the Erythrocyte Geometry, 
Microvasc. Res., 4 (1972) 335-347.

[6] Funaki H., Contribution on the Shapes of Red Blood Corpuscles, Japan. J. Physiol., 
5 (1955) 81-92.

[7] Henderson D., Differential Geometry: A Geometric Introduction, Prentice Hall, 
New Jersey, 1998.

[8] Hoppe W., Lohmann W., Markl H. and Ziegler H. (Eds), Biophysics, Springer- 
Verlag, Berlin 1983.

[9] Hwang W. and Waugh R., Energy of Dissociation of Lipid Bilayer From The 
Membrane Skeleton of Red Blood Cells, Biophys. J. 72 (1997) 2669-2678.

[10] Hyde S., Anderson S., Larson K., Blum Z., Landh T, Lidin S. and Ninham B., 
The Language of Shape, Elsevier, Amsterdam 1997.

[11] Jahnke E, Emde F and Lösch F, Tafeln Höherer Funktionen, Teubner Verlag, 
Stuttgart 1960.

[12] Liu Q-H., Haijun Zh., Liu J-X. and Zhong-Can O-Y, Spheres and Prolate and 
Oblate Ellipsoids From Analytical Solution of Spontaneous Curvature Fluid Mem­
brane Model, Preprint, Cond-Mat/9906038, 1999.

[13] Matz F, The Rectification of the Cassinian Oval by Means of Elliptic Functions, 
Am. Math. Monthly, 2 (1895) 221-222.



46 B. Angelov and I. Mladenov

[14] Mladenov I., An Integrable System on §2, In: Topics in Complex Analysis, Dif­
ferential Geometry and Mathematical Physics, S. Dimiev and K. Sekigawa (Eds), 
World Scientific, Singapore 1997, pp. 158-164.

[15] Mladenov I., Uniformization of the Cassinian Oval, C. R. Acad. Sei. Bulg., 53 
(2000) 13-16.

[16] Oprea J., Differential Geometry and Its Applications, Prentice Hall, New Jersey, 
1997.

[17] Press W., Flannery B., Teukolsky, and Vetterling W., Numerical Recipes in Pascal, 
Cambridge University Press, Cambridge 1989.

[18] Seddon J., Templer R., In: Handbook of Biological Physics Vol /, Lipowsky R. 
and Sackmann E. (Eds), Elsevier, Amsterdam 1995.

[19] Svetina S. and Zeks B., Membrane Bending Energy and Shape Determination of 
Phospholipid Vesicles and Red Blood Cells, Eur. Biophys. J. 17 (1989) 101-111.

[20] Vayo H., Some Red Blood Cell Geometry, Canadian J. Physiol. Pharmacol., 61 
(1983) 646-649.


	1.	Introduction

	2.	Explicit Coordinate Presentations of RBC Shape

	2.1.	Polar Coordinates

	2.2.	Spherical Polar Coordinates

	2.3. Polar Coordinates via Elliptic Functions


	(2.12)

	w2 = (i- a2c2)(i + m2C2)

	i,2

	' A2 c2-“2 <2,8,

	(2.20)

	(2.21)

	(2.22)

	T=F1

	/-	,

	3.	Fundamental Forms of RBC Surface

	„(V+*-,*)

	ï^2	’

	4.	Geometric Quantities of RBC

	4.1. Diameter and Thickness


	V2

	4.2.	Volume

	4.3.	Surface Area

	4.4.	Cross Section Area

	4.5.	Length of Cross Section



	Fi (b b1*™)

	4vTT

	5.	Elastic Free Energy of RBC Outer Membrane



	r/(s)=_.--^8+_-i2^r +

	6.	Approximate Formulae

	7.	Concluding Remarks

	Appendix

	Acknowledgement


	References






