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A FORMULA FOR THE JONES-WENZL PROJECTIONS

SCOTT MORRISON

Abstract. I present a method of calculating the coe�cients appearing in the Jones-Wenzl projections in

the Temperley-Lieb algebras. It essentially repeats the approach of Frenkel and Khovanov in [4] published in

1997. I wrote this note mid-2002, not knowing about their work, but then set it aside upon discovering their

article.

Recently I decided to dust it o� and place it on the arXiv — hoping the self-contained and detailed proof I

give here may be useful.

The proof is based upon a simpli�cation of the Wenzl recurrence relation. I give an example calculation,

and compare this method to the formula announced by Ocneanu [13] and partially proved by Rezniko� [15].

I also describe certain moves on diagrams which modify their coe�cients in a simple way.

1. Basic Definitions

The quantum integers are denoted by [n], and are given in terms of the formal quantumparameter
q by the formula

[n] = qn−1 + qn−3 + · · ·+ q−(n−1) =
qn − q−n

q − q−1
.

The quantum integers satisfy many relations, all of which reduce to simple arithmetic relations when

evaluated at q = 1. For example, a simple result we will need later is

Lemma 1.1. Ifm ≥ a, then [m− a] + [m+ 1][a] = [m][a+ 1].

An n strand Temperley-Lieb diagram is a diagram drawn inside a rectangle with n marked points

on both the upper and lower edges, with non-intersecting arcs joining these points. We consider isotopic

diagrams as equivalent. A through strand is an arc joining a point on the upper edge of a diagram to the

lower edge. A cup joins a point on the upper edge with another point on the upper edge, and similarly a

cap joins the lower edge to itself. A cap or cup is called innermost if it is exactly that — there are no

nested caps or cups inside it. This terminology is illustrated in Figure 1.

through
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ee
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Figure 1.

The n strand Temperley-Lieb algebra, denoted TLn, is the algebra over C(q) spanned by the

Temperley-Lieb diagrams, with multiplication de�ned on this basis by stacking diagrams. In such a

product of diagrams closed loops may appear, each of which we remove while inserting an additional

factor of −[2]. Two quite di�erent sign conventions appear in the literature. Generally, in topological

applications loops are given the value −[2], but in the theory of subfactors the value [2]. I have employed
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the present convention, because it results in simpler formulas, with all coe�cients positive. To pass

between the two conventions, replace everywhere [i] with (−1)i+1[i], or equivalently q with −q.
Figure 2 illustrates multiplication in the 5 strand algebra.

= −[2]

Figure 2. A calculation in the 5 strand Temperley-Lieb algebra.

We can also de�ne vector spaces TLn,m, spanned by isotopy classes of diagrams with m points on

the lower boundary of the rectangle, and n along the top. These �t together into a monoidal category

[1, 2] over C(q), with objects in N, and TLn,m giving the morphisms from m to n.

Equivalently, we can give a de�nition of the Temperley-Lieb algebra in terms of generators and

relations [5].
1

De�ne the multiplicative generator ei (i = 1, . . . , n − 1) as the diagram with i − 1
vertical strands, a cap-cup pair, then n− i− 1 more vertical strands. Figure 3 illustrates the multiplicative

generators in the 5 strand algebra.

e1 e2 e3 e4

Figure 3. The multiplicative generators in the 5 strand Temperley-Lieb algebra.

The Temperley-Lieb algebra is generated by these diagrams along with the identity diagram, denoted

1, subject to the relations

eiei = −[2]ei

eiei±1ei = ei

eiej = ejei if |i− j| ≥ 2.

Inside the Temperley-Lieb algebra TLn we have the two-sided ideal In, generated by the elements

{e1, . . . , en−1}. This ideal has codimension 1; it is spanned by diagrams with n − 2 or fewer through

strands, that is, every diagram except the identity diagram.

1
For the relationship between the diagrammatic algebra and ‘generators and relations’ algebra when the formal parameter

q has been evaluated at a complex root of unity, see [3, 6].
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2. The Jones-Wenzl idempotent

Inside the n strand Temperley-Lieb algebra there is a special element called the Jones-Wenzl idem-
potent, denoted f (n)

. It is characterised by the properties

f (n) 6= 0

f (n)f (n) = f (n)

eif
(n) = f (n)ei = 0 ∀i ∈ {1, . . . , n− 1} .

(2.1)

The second equation could be equivalently stated as Inf (n) = f (n)In = 0.

The aim of this work is to present new methods for calculating the coe�cients for each diagram

appearing in the Jones-Wenzl idempotent. The starting point will be the Wenzl recurrence formula,

allowing us to calculate f (n+1)
in terms of f (n)

.

Lemma 2.1. The coe�cient of the identity diagram in a Jones-Wenzl idempotent is always 1.

Proof. Write f (n) = α1 + g, with α ∈ C and g ∈ In. We want to see that α = 1. This follows from

f (n)f (n) = f (n)α1 + f (n)g = αf (n) + 0, so α = 1. �

Lemma 2.2. The Jones-Wenzl idempotent, characterised by Equation 2.1, is unique.

Proof. Suppose both fn
1 and fn

2 satisfy Equation 2.1. Write fn
1 = 1+g1 and fn

2 = 1+g2, where g1, g2 ∈ In.

Then fn
1 f

n
2 = fn

1 (1 + g2) = fn
1 and similarly fn

1 f
n
2 = (1 + g1)f

n
2 = fn

2 . Thus fn
1 = fn

2 . �

For example, the 3 strand idempotent is

f (3) = +
[2]

[3]
+

[2]

[3]
+

1

[3]
+

1

[3]

The n strand Temperley-Lieb algebra naturally includes into the n+ 1 strand algebra, by adding a

vertical strand to the right side of the diagram. Taking advantage of this, we abuse notation and write

f (n) ∈ TLn+1 to mean the n strand Jones-Wenzl idempotent, with a vertical strand added to the right,

living in the n+ 1 strand algebra.

Proposition 2.3 (Wenzl recurrence formula). The Jones-Wenzl idempotent satis�es

f (n+1) = f (n) +
[n]

[n+ 1]
f (n)enf

(n), (2.2)

or, diagrammatically,

· · ·

· · ·
f (n+1) =

· · ·

· · ·
f (n) +

[n]

[n+ 1] · · ·

· · ·
f (n)

· · ·

· · ·
f (n)

.

This is a well known result. The original paper is [16]. Various proofs can be found in any of

[1, 7, 8, 12].
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3. Simplifications of the Wenzl recurrence formula

We will now consider the last term,
[n]

[n+1]
f (n)enf

(n)
, in the Wenzl recurrence formula. By expanding

this appropriately, we will see that many of the terms do not contribute.

Let P denote the leftmost n− 1 points along the top edge of an n strand diagram. De�ne Jn ⊂ TLn

as the linear span of those diagrams in which some two points of P are connected together by a strand.

This is a left ideal; multiplying by any diagram on the right does not change this condition. Further we

can write TLn = Jn

⊕
Kn, where Kn is spanned by the diagrams in which the points of P are each

connected to points not in P , that is, along on the bottom edge of the diagram or the top right point. This

collection of diagrams consists of those diagrams with a single cup at the top right, and a single cap at

some position along the bottom edge, along with the identity diagram. We denote these diagrams by gn,i,
with i = 1, . . . , n− 1, with the subscript i indicating the position of the cap. Further, for convenience we

write gn,n = 1. This is illustrated for n = 6 in Figure 3. From this, we see Jn has codimension n.

g6,1 g6,2 g6,3 g6,4 g6,5 g6,6 = 1

Figure 4. The diagrams spanning K6.

Lemma 3.1. The left ideal Jn is contained in the kernel of the map TLn ⊂ TLn+1 → TLn+1 given by
h 7→ f (n)enh.

Proof. If h is a diagram in Jn, then we can write h = eih
′
for some 1 ≤ i ≤ n− 2, and h′ ∈ TLn. Then

f (n)enei = f (n)eien = 0. �

This immediately allows us to simplify the Wenzl recurrence relation. Write f (n) = f
(n)
J + f

(n)
K , with

f
(n)
J ∈ Jn and f

(n)
K ∈ Kn. Then we have

f (n)enf
(n) = f (n)en(f

(n)
J + f

(n)
K )

= f (n)enf
(n)
K .

Now Kn is spanned by the diagrams gn,i for i = 1, . . . , n, so we can write

f
(n)
K =

n∑
i=1

coeff
∈f (n)

(gn,i) gn,i.

From this we easily obtain

Proposition 3.2 (Simpli�ed recurrence formula). The Jones-Wenzl idempotents satisfy

f (n+1) = f (n)

(
n∑

i=1

[n]

[n+ 1]
coeff
∈f (n)

(gn,i) gn+1,i + gn+1,n+1

)
. (3.1)

Proof. We use the fact that

engn,i = gn+1,i, (3.2)
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as illustrated in Figure 3, and calculate as follows:

f (n+1) = f (n) +
[n]

[n+ 1]
f (n)en

n∑
i=1

coeff
∈f (n)

(gn,i) gn,i

= f (n) +
[n]

[n+ 1]
f (n)

n∑
i=1

coeff
∈f (n)

(gn,i) engn,i

= f (n)gn+1,n+1 +
[n]

[n+ 1]
f (n)

n∑
i=1

coeff
∈f (n)

(gn,i) gn+1,i

= f (n)

(
n∑

i=1

[n]

[n+ 1]
coeff
∈f (n)

(gn,i) gn+1,i + gn+1,n+1

)
.

�

=

Figure 5. A sample calculation, e5g5,3 = g6,3, illustrating Equation 3.2.

This simpli�cation of the Wenzl recurrence relation is not in itself particularly useful. It is still

‘quadratic’ in the sense that when expanded, each term contains two unknown coe�cients. However, we

can now use it to make a direct calculation of the quantities coeff(gn,i), which will enable us to further

simplify the recurrence relation to a ‘linear’ form.

Proposition 3.3 (Further simpli�ed recurrence formula). The coe�cients of the diagrams with ‘a single
right cup’ are given by

coeff
∈f (n)

(gn,i) =
[i]

[n]
, (3.3)

and the recurrence formula thus becomes

f (n+1) =
f (n)

[n+ 1]

(
n+1∑
i=1

[i]gn+1,i

)
. (3.4)

Proof. At n = 1, there is only one such diagram, 1 = g1,1, with coe�cient 1, as required. Now assume

Equation 3.3 holds for some value of n. Equation 3.4 follows immediately from Equation 3.1, by the

following calculation:

f (n+1) = f (n)

(
n∑

i=1

[n]

[n+ 1]

[i]

[n]
gn+1,i + gn+1,n+1

)

= f (n)

(
n∑

i=1

[i]

[n+ 1]
gn+1,i +

[n+ 1]

[n+ 1]
gn+1,n+1

)

=
f (n)

[n+ 1]

(
n+1∑
i=1

[i]gn+1,i

)
.
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We will now use this to calculate the coe�cient of gn+1,i in f (n+1)
. Suppose h is a diagram in TLn, and

consider the term
[i]

[n+1]
coeff(h)hgn+1,i on the right hand side of Equation 3.4. We will determine the

diagrams h and values of i for which this term contributes to the gn+1,j term in f (n+1)
. There are several

cases to consider.

(1) The diagram h contains a cap connecting two of the leftmost n− 1 points at the bottom of the

diagram. In this case hgn+1,i has n− 4 or fewer through strands, and so can not contribute to the

gn+1,j term in f (n+1)
. An example of this appears in Figure 6.

(2) There is no such cap in h, but there is a cap connected the rightmost two points at the bottom of

the diagram. In this case the diagram hgn+1,i has a vertical strand on the right hand side, and so

again can not contribute. An example appears in Figure 6.

h h

Figure 6. Examples illustrating the �rst two cases in Proposition 3.3.

(3) There are no such caps, and h is the identity diagram. In this case

[i]

[n+ 1]
coeff
∈f (n)

(h)hgn+1,i =
[i]

[n+ 1]
gn+1,i.

These cases are exhaustive, and so it is easily seen that there is exactly one contribution to the gn+1,j

term in f (n+1)
, coming from the identity term in f (n)

and the gn+1,j term of the summation, and so the

coe�cient of gn+1,j in f (n+1)
is exactly

[j]
[n+1]

. Thus by induction the claimed result holds for all values of

n. �

Remark. An analogue of this ‘linear’ recurrence relation for idempotents in the sl3 spider (c.f. [11])

appears in Dongseok’s work [10, 9], where it is called a ‘single clasp expansion’.

4. Unfolding the recurrence formula

Let’s now think about the map (diagram) 7→ (diagram)
∑n+1

i=1
[i]

[n+1]
gn+1,i. Multiplying an n strand

diagram by gn+1,i can be thought of as ‘inserting a cap at the i-th position, and folding up the right strand’:
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multiply by g7,3 //

insert

a cap

��

isotopy

��

fold up the

rightmost strand

//

Each diagrammatic term in f (n+1)
thus arises from a sum of contributions generated in this way.

Choose some diagram D in TLn+1. To determine which terms in f (n)
contribute to the coe�cient of D in

f (n+1)
, we should take D, and ‘fold down the right strand, then select and remove an innermost cap’. It is

only the terms in f (n)
involving these diagrams which matter in calculating the coe�cient of D in f (n+1)

.

Suppose we chose to remove an innermost cap at position i. The resulting diagram, when multiplied by

the gn+1,i, gives the original diagram D.

Proposition 4.1. SupposeD is a diagram in TLn+1. Let D̂ ∈ TLn,n+2 be the diagram obtained by folding
down the top right end point of D. Let {i} be the set of positions of innermost caps in D̂, and Di ∈ TLn be
the diagram obtained by removing that innermost cap. Then

coeff
∈f (n+1)

(D) =
∑
{i}

[i]

[n+ 1]
coeff
∈f (n)

(Di) . (4.1)

Example. Consider the diagram ∈ TL5. Folding down the rightmost strand gives . There are

now two innermost caps we can remove, at positions 2 and 5. Thus

coeff
∈f (5)

( )
=

[2]

[5]
coeff
∈f (4)

( )
+

[5]

[5]
coeff
∈f (4)

( )
.

We can continue in this way. The diagram folds down to give , with only one cap to remove, and

similarly folds down to . Thus

coeff
∈f (5)

( )
=

[2][3]

[5][4]
coeff
∈f (3)

( )
+

[5][2]

[5][4]
coeff
∈f (3)

( )
=

[2][3] + [5][2]

[5][4]
.

Thus the coe�cient of a diagram is a certain sum over sequences of choices of arcs to remove. Iterating

the calculation in Equation 4.1 allows us to �nd the coe�cient of any diagram. Although this calculation

is based on a recursive step, it is very di�erent from Wenzl’s formula in Equation 2.2. In particular, we

never need to perform any multiplications in the Temperley-Lieb algebra, and we can �nd the coe�cient

of a diagram without calculating the entire projection, by performing simple combinatorial operations on

the diagrams.
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5. An explicit formula

It is possible to write down an explicit formula giving the result of this calculation, but it is made

somewhat awkward by the fact that the numbering of the strands changes as we successively remove

innermost caps.

A good way to think about the diagrams is as a ‘capform’ [7], produced by ‘folding the diagram down

to the right’.

!

Now, for a diagram with n strands, let

S =

(s1, . . . , sn) ∈ Nn

∣∣∣∣∣∣∣∣∣
the si are all distinct, 1 ≤ si ≤ n+ i− 1,

si is the position of the left end of a cap

for each i, and if s̃i denotes the position of

the corresponding right end, then if i < j,
and si < sj , then s̃i < sj also

 .

The sequences in S specify choices of orders in which to remove strands. The restriction 1 ≤ si ≤ n+i−1
ensures that we only remove a strand when its initial point is in the left half of the capform, and the

second restriction ensures that we remove only innermost caps.

This set S is not quite what is needed, because although it describes the orders in which we can

remove strands, the factors appearing in Equation 4.1 depend on the position of the cap at the moment

we remove it.

This position is given by the map τ : s 7→ s− 2κ(s), where

κ(s)i = # {1 ≤ j ≤ i− 1 | sj < si} .

Thus for example τ(s)2 =

{
s2 if s1 > s2
s2 − 2 if s1 < s2

.

Then we have

Proposition 5.1. The coe�cient in f (n) of a diagram D with index set S, as given above, is

coeff
∈f (n)

(D) =
1

[n]!

∑
s∈S

[τ(s)], (5.1)

using the convenient notations [n]! = [n][n− 1] · · · [1] and [(t1, . . . , tn)] = [t1] · · · [tn].

Example. We redo the calculation of coeff∈f (5)

( )
. The index set has two elements, S = {(2, 5, 7, 4, 1), (5, 2, 7, 4, 1}.

Then τ(S) = {(2, 3, 3, 2, 1), (5, 2, 3, 2, 1)}, and so

coeff
∈f (5)

( )
=

[2][3][3][2][1] + [5][2][3][2][1]

[5]!
=

[2][3] + [5][2]

[5][4]
,

as we calculated before.
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6. k-moves

We’ll next apply this algorithm for computing coe�cients to prove ‘k-move invariance’. A k-move

acts on the capform of a diagram transforming a collection of k nested caps with centre strictly in the left

half of the capform into k− 1 nested caps to the right of a single cap, while leaving the rest of the diagram

unchanged. We apply k-moves to rectangular Temperley-Lieb diagrams by converting to a capform,

applying the move as described, and converting back.

Thus, a valid 4-move is illustrated below.

7→

The condition that the centre of the capform must lie in the left half of the diagram requires that the

move does not decrease the number of through strands in the original diagram.

The following theorem relating the coe�cients of diagrams obtained by k-moves allows very e�cient

calculations in many situations.

Proposition 6.1. If D′ is obtained from a diagram D ∈ TLn by a k-move then

[k] coeff
∈f (n)

(D) = coeff
∈f (n)

(D′) .

The proof is a somewhat complicated combinatorial argument, based on the algorithm above, and

manipulation of relations amongst the quantum integers.

We use the notation of Proposition 5.1. First we describe the structure of the index set S ′ for the

diagram D′, in terms of the index set S for D.

Each s ∈ S describes an order in which to successively remove strands. In particular, it tells us the

(increasing) times at which we remove each of the k nested caps. Associated to this ordering we have

several possible orderings for the diagram D′. Instead of removing the k caps in order, we can now

remove the additional single cap at any point instead. Thus we obtain k di�erent elements of S ′, which

remove strands in the rest of the diagram at exactly the same times as s. At some point (di�erent for each

of the k elements) instead of removing the current innermost cap of the k nested caps, we remove the

new single cap. It is not too hard to see that we obtain all valid sequences in S ′ this way, and each exactly

once. This is formalised in the next paragraph.

Suppose the leftmost arc of the k nested caps in D is the a-th strand. For each s ∈ S, de�ne

s(1), . . . , s(k) ∈ S ′ as follows. Let j1 < · · · < jk be the positions in s of the numbers a+ k− 1, . . . , a, and

call these positions ‘marked’. Because of the nested structure, we have sji = a+ k − i. In the following

we’ll often need to describe the elements of a sequence of the marked positions, so we’ll introduce the

following notation:

((s)) = (sji)
k
i=1 = (a+ k − 1, a+ k − 2, . . . , a).

Now let s(i) be the same as s in the unmarked positions, and((
s(i)
))

= (a+ k, a+ k − 1, . . . , a+ k + 2− i, a︸︷︷︸
i-th position

, a+ k − i+ 1, . . . , a+ 3, a+ 2).

That is,

((
s(i)
))

= ((s)) + (1, 1, 1, . . . , 1, i− k, 2, . . . , 2, 2).

Lemma 6.2.
S ′ =

{
s(i) | s ∈ S, i ∈ 1, . . . , k

}
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and so

coeff
∈f (n)

(D′) =
1

[n]!

∑
s∈S

k∑
i=1

[τ(s(i))].

Proof of Proposition 6.1. We calculate τ(s(i)), then prove that

∑k
i=1[τ(s(i))] = [k][τ(s)].

Firstly, suppose ((κ(s))) = (κ1, . . . , κk), so τ(s)ji = a + k − i − 2κi. For brevity we’ll de�ne

bi = a + k − i − 2κi. Outside the marked positions, κ(s(i)) agrees with κ(s), and

((
κ(s(i))

))
=

(κ1, κ2, . . . , κi−1, κi, κi+1 + 1, . . . , κk + 1). Thus((
τ(s(i))

))
= (a+ k − 2κ1, a+ k − 1− 2κ2, . . . , a+ k − (i− 2)− 2κi−1,

a− 2κi, a+ k − (i+ 1)− 2κi+1, . . . , a− 2κk)

= (b1 + 1, b2 + 1, . . . , bi−1 + 1, bi − k + i, bi+1, . . . , bk).

We want to prove that

∑k
i=1[
((
τ(s(i))

))
] = [k][(b1, . . . , bk)]. To this end, de�ne the partial sum

Tl =
∑l

i=1[
((
τ(s(i))

))
]. We will show that

Tk = Tl +
l∏

j=1

[bj + 1] · [k − l] ·
k∏

j=l+1

[bj] (6.1)

for each l, and so, evaluating at l = 0, Tk = [k]
∏k

j=1[bj], as required.

Certainly Equation 6.1 holds for l = k, since [0] = 0. Suppose it holds for some value l. We can pull

out the �nal term of the summation, and obtain

Tk = Tl +
l∏

j=1

[bj + 1] · [k − l] ·
k∏

j=l+1

[bj]

= Tl−1 +
l−1∏
j=1

[bj + 1] · ([bl − k + l] + [bl + 1][k − l])
k∏

j=l+1

[bj]

and by Lemma 1.1, this is

= Tl−1 +
l−1∏
j=1

[bj + 1] · [k − l + 1][bl] ·
k∏

j=l+1

[bj].

Thus Equation 6.1 also holds for l − 1, establishing the result. �

7. Results of Khovanov and Frenkel

(A note added years later...)

Khovanov and Frenkel’s paper [4] independently (and substantially earlier!) established most of the

results discussed here. Proposition 3.3 appears as their Theorem 3.5, Proposition 4.1 appears as their

Corollary 3.7, and Proposition 6.1 is a special case of their Proposition 3.8.

8. Results of Ocneanu and of Reznikoff

A similar formula has previously been published for these coe�cients, by Ocneanu [13], although a

proof of that formula was not given. His formula uses the alternative convention that closed loops have

value [2].
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Subsequently, a proof of special cases of this formula was been provided by Rezniko� [14, 15]. The

proof con�rms Ocneanu’s formula for diagrams in TLn with n−2 or n−4 through strings, and uses very

di�erent methods (via the Brauer representation of the Temperley-Lieb algebra) from those employed

here.

The method presented here readily reproduces Rezniko�’s results. Some examples of this are given

below. In doing so, this proves that Ocneanu’s formula and the formula here are equivalent for diagrams

with n−2 or n−4 through strings. However, I have been unable to obtain a direct proof that the formulas

agree for all diagrams.

It is reasonably easy to prove that in limited cases the k-move invariance described in §6 holds for

Ocneanu’s formula as well. In particular, for two diagrams related by a k-move that involves no through

strings at all, the coe�cients given by Ocneanu’s formula agree with Proposition 6.1.

This suggests a way to prove the equivalence of the formula here and Ocneanu’s directly. If we knew

the two formulas agreed on some class of simple diagrams, they would also agree on all diagrams obtained

from these by a sequence of k-moves and inverse k-moves. However, the equivalence classes of diagrams

under these moves are not particularly large; they each contain a single diagram with no nested caps or

cups.

9. An application to diagrams with n− 4 through strings

In this section, we give an explicit calculation of the coe�cient of certain diagrams with exactly n− 4
through strings. Although we only do one case here, all the other cases are no more di�cult.

We use a combination of the summation formula of Equation 4.1 and the k-moves of the §6. Hopefully

this will illustrate the computational power of these techniques!

A diagram with n − 4 through strings has exactly 2 caps and 2 cups. We restrict our attention to

those diagrams with no nested caps or cups. Consider such a diagram D. Thus we can unambiguously

refer to these as the ‘left cap’, ‘right cap’, ‘left cup’, and ‘right cup’. Suppose the leftmost points of these

arcs occur at positions b1, b2, t1 and t2. (And of course, b2 ≥ b1 + 2, t2 ≥ t1 + 2.)

Because the coe�cients of diagrams are preserved when the diagram is re�ected in a horizontal line,

we may assume that the right cap is no further to the right than the right cup, that is, that t2 ≥ b2.
In this con�guration, we can apply an inverse (n− t2)-move, moving to right cup as far to the right

as possible, obtaining the diagram D′, with t2 = n− 1. The coe�cients are related by coeff∈f (n) (D′) =
1

[n−t2] coeff∈f (n) (D), by Proposition 6.1.

We now apply the reduction formula. Folding down the top right point of the diagram turns the right

cup into a through strand. Next, we have to choose one of the caps, at positions b1 and b− 2, to remove.

The resulting diagrams are D′b1 , with a cap at position b2 − 2 and a cup at position t1, and D′b2 with a cap

at position b1 and a cup at position t1. Then Equation 4.1 then tells us

coeff
∈f (n)

(D′) =
[b1]

[n]
coeff
∈f (n−1)

(
D′b1
)

+
[b2]

[n]
coeff
∈f (n−1)

(
D′b−2

)
. (9.1)

The coe�cients appearing here depend on the relative ordering of b2− 2 and t1 (for the �rst term), and of

b1 and t1 (for the second term). We’ll assume now that t1 ≥ b2− 2. (The other two cases, b1 ≤ t1 ≤ b2− 2
and t1 ≤ b1, are exactly analogous.) In this case, we can apply an inverse move to each diagram, as above,
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to move the cup to the far right, and then use Equation 3.3. Thus

coeff
∈f (n−1)

(
D′b−1

)
=

[b2 − 2][n− 1− t1]
[n− 1]

coeff
∈f (n−1)

(
D′b−2

)
=

[b1][n− 1− t1]
[n− 1]

.

Putting this all together, we obtain

coeff
∈f (n)

(D) =
[b1]([b2] + [b2 − 2])[n− 1− t1][n− t2]

[n][n− 1]

=
[2][b1][b2 − 1][n− 1− t1][n− t2]

[n][n− 1]

This agrees with the formula given as Equation 3 in [15], for ‘Style 3’ diagrams. (The other two styles of

diagrams there correspond exactly to the other two cases described previously.)
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