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Abstract. We study boundedness on Lp([0, T ] × RN ) of Riesz trans-

forms ∇(A)−1/2 for class of parabolic operators such as A = ∂
∂t
−∆ +

V (t, x). Here V (t, x) is a non-negative potential depending on time t
and space variable x. As a consequence, we obtain W 1,p

x -solutions for
the non-homogeneous problem

∂tu−∆u + V (t, .)u = f(t, .), u(0) = 0

for initial data f ∈ Lp([0, T ]× RN ).

1. Introduction

Harmonic analysis of Schrödinger operators A = −∆+V (x) has attracted
attention in recent years. For example, the theory of Hardy and BMO
spaces associated to such operators (see [9], [14] and the references there),

Lp-boundedness of the associated Riesz transforms ∇A−1/2 (see e.g. [17] or
[20]), spectral multipliers ([8]) have been developed. Related operators to

Riesz transforms such as D2(−∆ + V )−1, V (−∆ + V )−1, V
1
2 (−∆ + V )−

1
2 ,

∇(−∆ + V )−
1
2 have been studied on Lp-spaces under suitable assumptions

on the potential V (see [19] or [4]). Less investigated is the Lp-boundedness
of the analogous operators associated with parabolic Schrödinger operators
A = ∂t−∆+V (t, x). We refer for example to [5] where the Lp-boundedness
of∇2(∂t−∆+V (x, t))−1, or equivalently V (∂t−∆+V (t, x))−1 is proved for a
special class of potentials. See also [12] for the case where V is time indepen-
dent. To our best knowledge, Riesz transforms of A have not been studied.
The aim of this note is to close this gap and prove under some assumptions
on the potential V = V (t, .) that ∇A−1/2 is bounded on Lp([0, T ]×RN ) for
suitable p.

Boundedness of the operator ∇(−∆+V (x))−1/2 on Lp(RN ) relies heavily
on heat kernel bounds, i.e., bounds for the integral kernel of the semigroup
e−t(−∆+V ). For non-negative V such bounds are Gaussian and follow easily
from the domination by the Gaussian semigroup. When dealing with Riesz
transforms of parabolic operators, A looks like a degenerate operator in
N + 1 variables (t, x1, · · · , xN ) (we do not have ∂2

t in the expression of A).

Therefore the methods to study Lp(RN )-boundedness of ∇(−∆+V (x))−1/2

do not work for ∇(∂t−∆+V (t, x))−1/2 on Lp([0, T ]×RN ). Even in the case
p = 2 it is not clear (at least to us) whether the latter operator is always
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bounded. In the case where V (t, x) = V (x) we shall see that the operator

∇(∂t −∆ + V (x))−1/2 is bounded on L2([0, T ]× Rn).

Our strategy to prove boundedness of∇(∂t−∆+V (t, x))−1/2 on Lp([0, T ]×
RN ) is based on the maximal regularity property of the corresponding non-
autonomous Cauchy problem

∂tu−∆u+ V (t, .)u = f(t, .), u(0) = 0 (NACP)

for initial data f ∈ Lp([0, T ] × RN ). Indeed the maximal regularity of
(NACP) implies that the domain of A is contained in the domain of A =
−∆ + V (t, x) (but seen as an operator on Lp([0, T ] × RN ), see (2)). Com-
bining this embedding with the isomorphism between interpolation spaces
and domains of fractional powers will allow us to use the boundedness of
Riesz transforms of −∆ + V . This simple idea is quite effective but has a
disadvantage in the sense that it gives boundedness of ∇(I +A)−1/2 rather

than ∇A−1/2. If we assume that V (t, x) ≥ c > 0, then boundedness of

∇A−1/2 is equivalent to boundedness of ∇(I +A)−1/2.
One of our results asserts the following: suppose that there exists W ∈
L∞loc(RN ) such that

c1W (x) ≤ V (t, x) ≤ c2W (x) (a.e. x ∈ RN ) and all t ∈ [0, T ],

and there exists β > 1/2 such that

|V (t, x)− V (s, x)| ≤ c2W (x)|t− s|β (a.e. x ∈ RN ) and all t, s ∈ [0, T ],

then ∇(I +A)−1/2 is bounded on Lp([0, T ]×RN ) for all p ∈ (1, 2]. If N ≥ 3

and W ∈ LN/2−ε(RN ) ∩ LN/2+ε(RN ) for some ε > 0, then ∇(I + A)−1/2 is
bounded on Lp([0, T ]× RN ) for p ∈ (2, N).

Note that the maximal regularity of (NACP) we need in order to prove
this result was studied in [18].

The ideas presented here work also for other operators as elliptic oper-
ators with time dependent coefficients. We shall however concentrate on
Schrödinger operators with time dependent potentials.

We finally mention that the boundedness of the Riesz transforms of A
implies that the solution u(t, x) of the Cauchy problem (NACP) satisfies u ∈
W 1,p
x ([0, T ]×RN ). The maximal regularity says that u ∈W 1,p

t ([0, T ]×RN ).

Here W 1,p
y denotes the Sobolev space with respect to the variable y = t or

y = x.

2. Preliminaries and known results

We first start by recalling some known results on Riesz transforms of
time independent Schrödinger operators. We consider A = −∆ + V and
the Riesz transform ∇A−1/2. For every 0 ≤ V ∈ L1

loc(RN ), it is plain that

∇A−1/2 is bounded on L2(RN ) (with values (L2(RN ))N ). The problem of
the Lp-boundedness of this Riesz transform has been investigated by several
authors. We quote the following results.

Theorem 2.1. ([17, Chapter 7], [20] or [10]) Let 0 ≤ V ∈ L1
loc(RN ) and

1 < p ≤ 2. Then the Riesz transform of A = −∆+V is bounded in Lp(RN ).
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In particular, there exists a positive constant C such that

‖∇u‖p + ‖V
1
2u‖p ≤ C‖(−∆ + V )

1
2u‖p

for every u ∈ C∞c (RN ).

For p = 1, the Riesz transform is weak type (1, 1). For p > 2, the
Lp boundedness requires additional assumptions on the potential V . If V
satisfies some reverse Hölder inequalities, it is possible to prove that some
values of p > 2 are allowed. Recall the following definition

Definition 2.2. Let 1 < q ≤ ∞. We say that ω ∈ Bq, the class of the
reverse Hölder weights of order q, if ω ∈ Lqloc, ω > 0 a.e. and there exists a
positive constant C such the inequality

(1)

(
1

|Q|

∫
Q
ω(x)q dx

) 1
q

≤ C

|Q|

∫
Q
ω(x) dx

holds, for every cube Q of RN . If q =∞, the left hand side of the inequality
above has to be replaced by the essential supremum of ω on Q. The smallest
positive constant C such that (1) holds is the Bq constant of ω.

Theorem 2.3. ([19]) Let V ∈ Bq, N
2 ≤ q ≤ N . Then, set

1

p0
=

1

q
− 1

N
, it

holds

‖∇(−∆ + V )−
1
2 f‖p ≤ ‖f‖p

for every 1 < p ≤ p0 and f ∈ Lp(RN ).

This theorem has been extended in [4] as follows.

Theorem 2.4. ([4]) Let V ∈ Bq for some q > 1. Then there exists ε > 0

such that ∇(−∆ + V )−
1
2 is bounded in Lp for 1 < p < 2(q + ε).

Other results such as boundedness of∇2(−∆+V )−1 or∇(−∆+V )−1V 1/2

can be found in [4] and [19]. We also mention the following result which
does not require the Hölder reverse assumption.

Theorem 2.5. ([2], [3]) If 0 ≤ V ∈ LN/2−ε ∩ LN/2+ε for some ε > 0 then

∇(−∆ + V )−1/2 is bounded on Lp(RN ) for all p ∈ (1, N).

Now we move to the parabolic case. Fix T > 0 and set Q = [0, T ]× RN .
We assume that 0 ≤ V ∈ Lploc(Q) and consider the parabolic operator

A = ∂t −∆ + V (t, x)

on Lp(Q), endowed with the maximal domain

Dp(A) = {u ∈ Lp(Q) : V u ∈ L1
loc(Q), Au ∈ Lp(Q), u(0, ·) = 0}.

Observe that, since V ∈ Lploc, C
∞
c is contained in Dp(A). We have

Theorem 2.6. ([5], [12]) Fix p ∈ [1,∞). For every λ > 0 the operator

λ + A is invertible and ‖(λ + A)−1‖p→p ≤
1

λ
. Moreover, C∞c is a core for

A.
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When it is necessary to specify that A is acting on Lp(Q) for some fixed
p we use the notation Ap. Because of the estimate of the resolvent of A, the

fractional power A−
1
2 can be defined as follows:

A−
1
2 = c

∫ ∞
0

1√
s

(s+A)−1ds.

Note also that A is injective. Indeed, if Au = 0 then v(t, x) = etu(t, x)
satisfies v ∈ D(A) and (A+ I)v = 0. Hence v = 0 which implies u = 0.

Now we can define the Riesz transform of A by ∇A−1/2 (in the distribu-

tional sense). The question we are interested in is whether ∇A−1/2 defines
a bounded operator on L2(Q) or more generally on Lp(Q) for some range
of p. As explained in the introduction, our strategy to answer this question
relies on the maximal regularity. In order to make this idea clear we need

to define the following operators Ã and D.
Fix p ∈ (1,∞) and 0 ≤ V ∈ Lp(Q). For fixed t ∈ [0, T ] we define on

Lp(RN ) the operator A(t) = −∆ + V (t, .) as the Schrödinger operator with
potential V (t, .). For fixed t, ∆−V (t, .) is the generator of a sub-Markovian
semigroup S(s), s ≥ 0. Hence it acts on Lp(RN ) for all p ∈ [1,∞). The
operator A(t), when considered on Lp(RN ), will be seen as (minus) the
generator of this semigroup on Lp(RN ). Now we define

(2) D(Ã) = {u ∈ Lp(Q), u(t) ∈ D(A(t)) a.e. A(.)u(.) ∈ Lp(Q)}

where (Ãu)(t) = A(t)u(t). We define also

D(D) = W 1,p
0 (0, T, Lp(RN )) = {u ∈W 1,p(0, T, Lp(RN )), u(0) = 0},

(Du)(t) = ∂tu(t) =
∂

∂t
u(t).

Note that the adjoint D∗ of D is given by

D(D∗) = {u ∈W 1,p(0, T, Lp(RN )), u(T ) = 0}, (D∗u)(t) = −∂tu(t).

Finally we recall the definition of Lp−maximal regularity for (NACP)
considered on Lp(RN ) – for every f ∈ Lp(Q) (we identify Lp(Q) with
Lp([0, T ], Lp(RN ))), there exists a unique solution u ∈ W 1,p(0, T, Lp(RN ))
to (NACP) such that u(t) ∈ D(A(t)) a.e. and A(.)u(.) ∈ Lp(Q). In other

words, D+ Ã : D(D)∩D(Ã) 7→ Lp(Q) is closed and bijective as an operator
on Lp(Q). In particular,

(3) D(A) ⊆ D(D) ∩D(Ã) = W 1,p
0 (0, T, Lp(RN )) ∩D(Ã).

The literature on maximal regularity is so broad that it is impossible to
provide a comprehensive bibliography here. The case of autonomous Cauchy
problems (time independent operators) is mostly well understood and we
refer the reader to [15], [11], [13], [7] and the references therein. Much less
is known for non-autonomous problems and most of the known techniques
use perturbation arguments. We refer to [1] and to [18] for an account. The
latter paper contains a criterion in terms of sesquilinear forms for maximal
regularity in Hilbert spaces.
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3. Time independent potentials

Suppose that 0 ≤ V = V (x) ∈ L1
loc(RN ). When dealing with the Riesz

transform ∇(−∆ + V )−1/2 the boundedness on L2(RN ) is a trivial fact.
Indeed, one has for every u ∈W 1,2(RN ) such that

∫
RN V |u|2 <∞,

‖∇u‖22 ≤
∫
RN

|∇u|2 +

∫
RN

V |u|2

= a(u, u)

= ‖(−∆ + V )1/2u‖22.
Here a denotes the symmetric bilinear form of the operator −∆ + V . The
keystone here lies in the standard fact that for any symmetric form a with
non-negative self-adjoint operator A,

(4) D(a) = D(A1/2) and a(u, v) = (A1/2u,A1/2v).

This strategy does not work for∇(∂t−∆+V (t, x))−1/2 on L2(Q) because the
operator A = ∂t−∆+V (t, x) is not self-adjoint. If V = V (x) is independent
of t we can prove the following result.

Proposition 3.1. Let 0 ≤ V ∈ L2
loc(RN ), u ∈ D(A

1
2 ). Then

‖∇u‖L2(Q) ≤ ‖A
1
2u‖L2(Q).

In particular, the Riesz transform ∇A−1/2 is bounded on L2(Q).

Proof. Let A = −∆ +V on L2(RN ) and denote by Ã the corresponding

operator on L2(Q) (see (2)). It is easy to see that Ã is non-negative self-

adjoint operator and (Ã)1/2 = Ã1/2. Therefore,

‖∇u‖2L2(Q) =

∫
[0,T ]

∫
RN

|∇u(t, x)|2dxdt

≤
∫

[0,T ]

∫
RN

|A1/2u(t, x)|2dxdt

= ‖(Ã)1/2u‖2L2(Q) = (Ãu, u)L2(Q).

Thus

(5) ‖∇u‖2L2(Q) ≤ ‖Ã
1/2u‖2L2(Q).

On the other hand, for u ∈ D(Ã2) ∩D((D∗D)),

(6) (Ã2u, u)L2(Q) ≤ ((Ã+D∗)(Ã+D)u, u)L2(Q).

To see this, we use the fact Ã2 ≤ Ã2 + D∗D (in the quadratic form sense)

and it suffices to prove that Ã2 +D∗D ≤ (Ã+D∗)(Ã+D). Or equivalently,

ÃD+D∗Ã ≥ 0. Since V = V (x) the operators A and D commute and hence

((ÃD +D∗Ã)u, u)L2(Q) = (DÃu, u)L2(Q) + (Ãu,Du)L2(Q)

=

∫
RN

∫ T

0
∂tAu(t, x).u(t, x)dtdx+

∫
RN

∫ T

0
Au(t, x).∂tu(t, x)dtdx

=

∫
RN

Au(T, x).u(T, x)dx ≥ 0.
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From (6) and the maximal regularity of A on L2(RN ) we obtain

Ã2 ≤ (Ã+D∗)(Ã+D) = A∗A.

Using the fact that Ã is self-adjoint and the fact that A and A∗ commute
(remember that D commute with A) we obtain

Ã ≤ (A∗)1/2(A)1/2.

This gives

‖Ã1/2u‖2L2(Q) ≤ ((A∗)1/2(A)1/2u, u)L2(Q) = ‖A1/2u‖2L2(Q).

We use now (5) and obtain the conclusion. �
It may be possible to extend the operator ∇A−1/2 from L2(Q) to Lp(Q)

for all p ∈ (1, 2) by using the same method as in the case of ∇A−1/2. See [17]
or [20]. This remains to be done since it is not clear what the approximation
of identity one has to choose in order to apply the singular integral method
there. We shall proceed as on L2 by using maximal regularity. However, if
A is not invertible, we will need to consider I +A instead of A. We have

Theorem 3.2. Let 1 < p ≤ 2, 0 ≤ V ∈ Lploc(R
N ), u ∈ D(A

1
2 ). Then

‖∇u‖Lp(Q) ≤ ‖(I +A)1/2u‖Lp(Q).

That is the non-homogeneous Riesz transform ∇(I +A)−1/2 is bounded on
Lp(Q).

Theorem 3.3. Let p > 2, 0 ≤ V ∈ Lploc(R
N ). Suppose moreover that the

Riesz transforms of A = −∆ + V is bounded on Lp(RN ). Then

‖∇u‖Lp(Q) ≤ ‖(I +A)1/2u‖Lp(Q)

for every u ∈ D(A
1
2 ). In other words, ∇(I +A)−1/2 is bounded on Lp(Q).

By Theorems 2.3 or 2.4, we obtain boundedness of ∇(I + A)−1/2 on
Lp(Q) provided V is in an appropriate reverse Hölder class. By Theorem

2.5, ∇(I + A)−1/2 is bounded on Lp(Q) for all p ∈ (2, N) provided V ∈
LN/2−ε(RN ) ∩ LN/2+ε(RN ) for some ε > 0.

The proof is based on the isomorphism between interpolation spaces and
domains of fractional powers for operator having bounded imaginary powers.
We first recall the following well known result.

Theorem 3.4. [6] Let (Ω, µ) be a σ-finite measure space and let 1 < p <∞.
Let L be a closed and densely defined operator on Lp(Ω, µ). If the resolvent
set of −L contains [0,+∞), satisfies

‖(λ+ L)−1‖p→p ≤
1

λ

and (λ+ L)−1 is positivity preserving for every λ > 0, then the operators L
has bounded imaginary powers and there is C > 0 such that

‖Lis‖p→p ≤ c(1 + s2)eπ|s|/2, s ∈ R.
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Proof of Theorem 3.2 Since the semigroup generated by −A = −(−∆+
V ) is a contraction semigroup on Lp(RN ), A has the maximal regularity (see

[16]). Therefore, D(A) ⊆ D(Ã) by (3). On the other hand, Ã has bounded
imaginary powers on Lp(Q) (see Lemma 3.5 below, where the result is proved
even when V depends on t). It is known that this implies that

[D(Ã), Lp(Q)] 1
2

= D(Ã1/2)

where [., .]α denotes the complex interpolation space. Therefore,

(7) [D(A), Lp(Q)] 1
2
⊆ [D(Ã), Lp(Q)] 1

2
= D(Ã1/2).

By Theorems 2.6 and 3.4, A also has bounded imaginary powers on Lp(Q).
Thus,

[D(A), Lp(Q)] 1
2

= D(A1/2).

This and (7) show that D(A1/2) ⊆ D(Ã1/2) and

‖Ã1/2u‖Lp(Q) ≤ C‖(I +A)1/2u‖Lp(Q)

for all u ∈ D(A1/2). By Theorem 2.1, we have∫ T

0
‖∇u(t, .)‖p

Lp(RN )
dt ≤ C

∫ T

0
‖A1/2u(t, .)‖p

Lp(RN )
dt

= C

∫ T

0
‖Ã1/2u(t, .)‖p

Lp(RN )
dt.

This together with the previous estimate imply the desired result. �
The proof of Theorem 3.3 is similar.

3.1. Time dependent potentials. In this section we consider the general
case where V = V (t, x). As before we assume that V is non-negative and lo-
cally integrable. Set A(t) = −∆+V (t, x). As explained before, −A(t) is the

generator on Lp(RN ) of the sub-Markovian semigroup S(s) = e−s(−∆+V (t,.)).

We define again Ã and A as in the previous sections. We start with the fol-
lowing lemma.

Lemma 3.5. Given p ∈ (1,∞), Ã has bounded imaginary powers on Lp(Q).

Proof. Fix λ > 0. It is easy to see that Ã is a closed operator. We claim

that λI + Ã is invertible on Lp(Q) and

(8) (λI + Ã)−1u(t) = (λI +A(t))−1u(t).

In order to see this, fix t ∈ [0, T ] and define on Lp(Q) the bounded operator
S such that

(Su)(t) = (λI +A(t))−1u(t),

for a.e. t and and all u ∈ Lp(Q). We obtain from the definition of Ã

((λI + Ã)S)u(t) = λ(λI +A(t))−1u(t) +A(t)(λI +A(t))−1u(t) = u(t).

Similarly, S(λI + Ã) = I. This shows (8).
The fact that λ(λI +A(t))−1 is a contraction on Lp(RN ) (for fixed t) gives

‖λ(λI + Ã)−1‖p→p ≤ 1.
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In addition, (8) shows that (λI+Ã)−1 is positivity preserving. We can apply
Theorem 3.4 and obtain the result. �

We recall the following result from [18].

Theorem 3.6. Let 0 ≤ V (t, x) ∈ L1
loc([0, T ]×RN ). Suppose that there exists

a non-negative potential W ∈ L1
loc(RN ) such that V satisfies the following

properties (in which c1, c2 are positive constants and β > 1/2)

c1W (x) ≤ V (t, x) ≤ c2W (x) (a.e. x ∈ RN ) and all t ∈ [0, T ],

|V (t, x)− V (s, x)| ≤ c2W (x)|t− s|β (a.e. x ∈ RN ) and all t, s ∈ [0, T ].

Then, for 1 < p < ∞, the family {A(t) = −∆ + V (t, ·), t ∈ [0, T ]} has
maximal regularity.

The main result of this section is formulated as follows.

Theorem 3.7. Suppose that 0 ≤ V (t, x) ∈ L∞loc([0, T ] × RN ) and satisfies

the assumptions of Theorem 3.6 with some W ∈ L∞loc(RN ).

1) For every p ∈ (1, 2), ∇(I +A)−1/2 is bounded on Lp(Q).

2) If N ≥ 3 and W ∈ LN/2−ε(RN ) ∩ LN/2+ε(RN ) for some ε > 0 then

∇(I +A)−1/2 is bounded on Lp(Q) for p ∈ (2, N).

The proof is very similar to the proof of Theorem 3.2. For assertion 2)
one uses Theorem 2.5 and note that for every fixed t and p ∈ (2, N)

‖∇(−∆ + V (t, .))−1/2‖p→p ≤ C

with a constant C depending only on ‖V (t, .)‖N/2+ε and ‖V (t, .)‖N/2−ε (see
[2], [3]). Hence C can be chosen depending only on ‖W‖N/2+ε and ‖W‖N/2−ε
and so independent of t. The rest of the needed arguments are similar to
proof of Theorem 3.2.

We can also formulate a result on boundedness on Lp(Q) of ∇(I+A)−1/2

for time dependent potentials that are in a certain reverse class. For such
potentials, the parabolic Cauchy problem has the maximal regularity. For
this last property, we refer the reader to [5].

Finally as explained in the introduction, when the Riesz transform ∇(I+

A)−
1
2 is bounded on Lp(Q), then for u ∈ D(A)

‖∇u‖Lp(Q) ≤ C‖∇(I+A)−1/2‖p→p‖(I+A)1/2u‖Lp(Q) ≤ C‖(I+A)1/2u‖Lp(Q).

Hence, for f ∈ Lp(Q) the Cauchy problem

∂tu+−∆u+ V (t, .)u = f(t, .)

has a solution which is W 1,p with respect to the space variable.
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