BOUNDEDNESS OF MAXIMAL OPERATORS AND MAXIMAL COMMUTATORS ON NON-HOMOGENEOUS SPACES

THE ANH BUI

Abstract

Let (X, μ) be a non-homogeneous space in the sense that X is a metric space equipped with an upper doubling measure μ. The aim of this paper is to study the endpoint estimate of the maximal operator associated to a Calderón-Zygmund operator T and the L^{p} boundedness of the maximal commutator with RBMO functions

1. Introduction

Let (X, d, μ) be a geometrically doubling regular metric space and have an upper doubling measure, that is, μ is dominated by a function λ (see Section 2 for precise definition). A kernel $K(\cdot, \cdot) \in L_{\text {loc }}^{1}(X \times X \backslash\{(x, y): x=y\})$ is called a Calderón-Zygmund kernel if the following two conditions hold:
(i) K satisfies the estimates

$$
\begin{equation*}
|K(x, y)| \leq C \min \left\{\frac{1}{\lambda(x, d(x, y))}, \frac{1}{\lambda(y, d(x, y))}\right\} \tag{1}
\end{equation*}
$$

(ii) there exists $0<\delta \leq 1$ such that

$$
\begin{equation*}
\left|K(x, y)-K\left(x^{\prime}, y\right)\right|+\left|K(y, x)-K\left(y, x^{\prime}\right)\right| \leq C \frac{d\left(x, x^{\prime}\right)^{\delta}}{d(x, y)^{\delta} \lambda(x, d(x, y))} \tag{2}
\end{equation*}
$$

whenever $d\left(x, x^{\prime}\right) \leq d(x, y) / 2$.
In what follows, by the associate kernel of a linear operator T, we shall mean the function $K(\cdot, \cdot)$ defined off-diagonal $\{(x, y) \in X \times X: x \neq y\}$ so that

$$
T f(x)=\int_{X} K(x, y) f(y) d \mu(y)
$$

holds for all $f \in L^{\infty}(\mu)$ with bounded support and $x \notin \operatorname{supp} f$.
A linear operator T is called a Calderón-Zygmund operator if its associate kernel $K(\cdot, \cdot)$ satisfies (1) and (2).

In [1] the authors studied the boundedness of Calderón-Zygmund operators and their commutators with RBMO functions. It was proved that if the Calderón-Zygmund operator T is bounded on $L^{2}(\mu)$ then T is of weak type $(1,1)$ and hence T is bounded on $L^{p}(\mu)$ for all $1<p<\infty$. Moreover, L^{p} boundedness of the commutators of Calderón-Zygmund operators

[^0]with RBMO functions for $1<p<\infty$ was also obtained in [1]. The obtained results in [1] can be viewed as extensions of those in [9] to spaces of non-homogenous type.

In this paper, we consider the maximal operator T_{*} associated with the Calderón-Zygmund operator T defined by

$$
T_{*} f(x)=\sup _{\epsilon>0}\left|T_{\epsilon} f(x)\right|
$$

where $T_{\epsilon} f(x)=\int_{d(x, y) \geq \epsilon} K(x, y) f(y) d \mu(y)$. Note that in [1], thanks to Cotlar inequality, it was proved that the maximal operator T_{*} is bounded on $L^{p}(\mu)$ for all $1<p<\infty$. The aim of this paper is to prove the following results:

- T_{*} is of weak type $(1,1)$;
- The commutator of T_{*} with an RBMO function is bounded on $L^{p}(\mu)$ for $1<p<\infty$.
Note that since the kernel $K_{\epsilon}(x, y)=K(x, y) \chi_{\{d(x, y)>\epsilon\}}(x, y)$ may not satisfy the condition (2), the Calderón-Zygmund theory may not be applicable to this situation. To overcome this problem, we use the smoothing technique in [8] by replacing $K_{\epsilon}(x, y)$ by some new "smooth" kernels. For detail, we refer to Section 3.2.

The organization of our paper as follows. Section 2 recalls the concept of RBMO space and the Calderón-Zygmund decomposition. Section 3 will be devoted to study the boundedness of the maximal operator T_{*} and the maximal commutator of T_{*} with an RBMO function. It will be shown that T_{*} is of type weak $(1,1)$ and the maximal commutator $T_{*, b}$ is bounded on $L^{p}(\mu)$ for all $1<p<\infty$.

2. $\mathrm{RBMO}(\mu)$ and Calderón-Zygmund decomposition

Let (X, d) be a metric space. We first review two concepts introduced in [2].

Geometrically doubling regular metric spaces. (X, d) is geometrically doubling if there exists a number $N \in \mathbb{N}$ such that every open ball $B(x, r)=\{y \in X: d(y, x)<r\}$ can be covered by at most N balls of radius $r / 2$. We use this somewhat non-standard name to clearly differentiate this property from other types of doubling properties. If there is no specification, the ball B means the ball center x_{B} with radius r_{B}. Also, we set $n=\log _{2} N$, which can be viewed as (an upper bound for) a geometric dimension of the space.

Upper doubling measures. A metric measure space (X, d, μ) is said to be upper doubling measure if there exists a dominating function λ with the following properties:
(i) $\lambda: X \times(0, \infty) \mapsto(0, \infty)$;
(ii) for $x \in X, r \mapsto \lambda(x, r)$ is increasing;
(iii) there exists a constant $C_{\lambda}>0$ such that

$$
\lambda(x, 2 r) \leq C_{\lambda} \lambda(x, r)
$$

for all $x \in X$ and $r>0$;
(iv) and the following inequality holds

$$
\mu(x, r) \leq \lambda(x, r)
$$

for all $x \in X$ and $r>0$, where $\mu(x, r)=\mu(B(x, r))$.
(v) $\lambda(x, r) \approx \lambda(y, r)$ for all $r>0 ; x, y \in X$ and $d(x, y) \leq r$.

Throughout the paper, we always assume that (X, d, μ) is geometrically doubling regular metric spaces and the measure μ is upper doubling measures.

For $\alpha, \beta>1$, a ball $B \subset X$ is called (α, β)-doubling if $\mu(\alpha B) \leq \beta \mu(B)$. The following result asserts the existence of a lot of small and big doubling balls.

Lemma 2.1 ([2]). The following statements hold:
(i) If $\beta>C_{\lambda}^{\log _{2} \alpha}$, then for any ball $B \subset X$ there exists $j \in \mathbb{N}$ such that $\alpha^{j} B$ is (α, β)-doubling.
(ii) If $\beta>\alpha^{n}$, here n is doubling order of λ, then for any ball $B \subset X$ there exists $j \in \mathbb{N}$ such that $\alpha^{-j} B$ is (α, β)-doubling.

For any two balls $B \subset Q$, we defined

$$
\begin{equation*}
K_{B, Q}=1+\int_{r_{B} \leq d\left(x, x_{B}\right) \leq r_{Q}} \frac{1}{\lambda\left(x_{B}, d\left(x, x_{B}\right)\right)} d \mu(x) \tag{3}
\end{equation*}
$$

We have the following properties.
Lemma 2.2. (i) If $Q \subset R \subset S$ are balls in X, then

$$
\max \left\{K_{Q, R}, K_{R, S}\right\} \leq K_{Q, S} \leq C\left(K_{Q, R}+K_{R, S}\right)
$$

(ii) If $Q \subset R$ are comparable size, then $K_{Q, R} \leq C$.
(iii) If $\alpha Q, \ldots \alpha^{N-1} Q$ are non (α, β)-doubling balls (with $\beta>C_{\lambda}^{\log _{2} \alpha}$) then $K_{Q, \alpha^{N} Q} \leq C$.

The proof of Lemma 2.2 is not difficult and we omit the details here.

Associated to two balls $B \subset Q$, the coefficient $K_{B, Q}^{\prime}$ can be defined as follows: let $N_{B, Q}$ be the smallest integer satisfying $6^{N_{B, Q}} r_{B} \geq r_{Q}$, then we set

$$
\begin{equation*}
K_{B, Q}^{\prime}:=1+\sum_{k=1}^{N_{B, Q}} \frac{\mu\left(6^{k} B\right)}{\lambda\left(x_{B}, 6^{k} r_{B}\right)} \tag{4}
\end{equation*}
$$

In general, it is not difficult to show that $K_{B, Q} \leq C K_{B, Q}^{\prime}$. In the particular case when λ satisfies $\lambda(x, a r)=a^{m} \lambda(x, r)$ for all $x \in X$ and $a, r>0$ for some $m>0$, we have $K_{B, Q} \approx K_{B, Q}^{\prime}$.
2.1. Definition of $\mathbf{R B M O}(\mu)$. Adapting to definition of RBMO spaces of Tolsa in [9], T. Hytönen introduced the $\operatorname{RBMO}(\mu)$, see [2].

Definition 2.3. Fix a parameter $\rho>1$. A function $f \in L_{\mathrm{loc}}^{1}(\mu)$ is said to be in the space $\operatorname{RBMO}(\mu)$ if there exists a number C, and for every ball B, a number f_{B} such that

$$
\begin{equation*}
\frac{1}{\mu(\rho B)} \int_{B}\left|f(x)-f_{B}\right| d \mu(x) \leq C \tag{5}
\end{equation*}
$$

and, whenever B, B_{1} are two balls with $B \subset B_{1}$, one has

$$
\begin{equation*}
\left|f_{B}-f_{B_{1}}\right| \leq C K_{B, B_{1}} \tag{6}
\end{equation*}
$$

The infimum of the values C in (6) is taken to be the RBMO norm of f and denoted by $\|f\|_{\operatorname{RBMO}(\mu)}$.

The RBMO norm $\|\cdot\|_{\operatorname{RBMO}(\mu)}$ is independent of $\rho>1$. Moreover the JohnNirenberg inequality holds for $\mathrm{RBMO}(\mu)$. Precisely, we have the following result, see Corollary 6.3 in [2].

Proposition 2.4. For any $\rho>1$ and $p \in[1, \infty)$, there exists a constant C so that for every $f \in \operatorname{RBMO}(\mu)$ and every ball B_{0},

$$
\left(\frac{1}{\mu\left(\rho B_{0}\right)} \int_{B_{0}}\left|f(x)-f_{B_{0}}\right|^{p} d \mu(x)\right)^{1 / p} \leq C\|f\|_{\operatorname{RBMO}(\mu)}
$$

2.2. Calderón-Zygmund decomposition. In non-doubling setting, the Calderón-Zygmund decomposition in \mathbb{R}^{n} was first investigated by [9] and then was generalized to the general case of non-homogeneous spaces (X, μ) by [1].

Proposition 2.5. (Calderón-Zygmund decomposition) For any $f \in L^{1}(\mu)$ and any $\lambda>0$ (with $\lambda>\beta_{0}\|f\|_{L^{1}(\mu)} /\|\mu\|$ if $\left.\|\mu\|<\infty\right)$ we have:
(a) There exists a family of finite disjoint balls $\left\{6 Q_{i}\right\}_{i}$ such that the family of balls $\left\{Q_{i}\right\}_{i}$ is pairwise disjoint and

$$
\begin{equation*}
\frac{1}{\mu\left(\eta^{2} Q_{i}\right)} \int_{\frac{\eta}{6} Q_{i}}|f| d \mu \leq \frac{\lambda}{\beta_{0}}, \text { for all } \eta>6 \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
|f| \leq \lambda \text { a.e. }(\mu) \text { on } \mathbb{R}^{d} \backslash \bigcup_{i} 6 Q_{i} \tag{9}
\end{equation*}
$$

(b) For each i, let R_{i} be a $\left(3 \times 6^{2}, C_{\lambda}^{\log _{2} 3 \times 6^{2}+1}\right)$ - doubling ball concentric with Q_{i}, with $l\left(R_{i}\right)>6^{2} l\left(Q_{i}\right)$ and we denote $\omega_{i}=\frac{\chi_{6 Q_{i}}}{\sum_{k} \chi_{6 Q_{k}}}$. Then there exists a family of functions φ_{i} with constant signs and supp $\left(\varphi_{i}\right) \subset R_{i}$ satisfying

$$
\begin{equation*}
\int \varphi_{i} d \mu=\int_{6 Q_{i}} f \omega_{i} d \mu \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i}\left|\varphi_{i}\right| \leq B \lambda \tag{11}
\end{equation*}
$$

(where B is some constant), and:

$$
\begin{equation*}
\left\|\varphi_{i}\right\|_{\infty} \mu\left(R_{i}\right) \leq C \int_{X}\left|w_{i} f\right| d \mu \tag{12}
\end{equation*}
$$

We will end this section by the following lemma which is useful in the sequel, see [1].

Lemma 2.6. For any two concentric balls $Q \subset R$ such that there are no (α, β)-doubling balls $\beta>C_{\lambda}^{\log _{2} \alpha}$ of the form $\alpha^{k} Q, k \in \mathbb{N}$ such that $Q \subset$ $\alpha^{k} Q \subset R$, we have

$$
\int_{R \backslash Q} \frac{1}{\lambda\left(x_{Q}, d\left(x_{Q}, x\right)\right)} d \mu(x) \leq C
$$

3. Boundedness of maximal operator T_{*} and maximal COMMUTATOR

3.1. The weak type of $(1,1)$ of T_{*}. In [1], the Cotlar inequality is obtained. More precisely, we have the following result.

Theorem 3.1. Let T be a L^{2} bounded Calderón-Zygmund operator. Then there exist $C>0$ and $0<\eta<1$ such that for any bounded function with bounded support f and $x \in X$ we have

$$
T_{*} f(x) \leq C\left(M_{\eta, 6}(T f)(x)+M_{(6)} f(x)\right)
$$

where

$$
M_{(\rho)}=\sup _{Q \ni x} \frac{1}{\mu(\rho Q)} \int_{Q}|f| d \mu
$$

and

$$
M_{p, \rho} f(x)=\sup _{Q \ni x}\left(\frac{1}{\mu(\rho Q)} \int_{Q}|f|^{p} d \mu\right)^{1 / p}
$$

For the proof we refer the reader to [1, Theorem 6.6].
Therefore, from the boundedness on $L^{p}(\mu)$ of $M_{(\rho)}$ and $M_{p, \rho}$, the boundedness of T_{*} on $L^{p}(\mu)$ follows. The endpoint estimate of T_{*} will be asserted in the following theorem.

Theorem 3.2. Let T be a Calderón-Zygmund operator. If T is bounded on $L^{2}(\mu)$ then the maximal operator T_{*} is of weak type $(1,1)$.

Proof. To do this, we will claim that there exists $C>0$ such that for any $\lambda>0$ and $f \in L^{1}(\mu) \cap L^{2}(\mu)$ we have

$$
\mu\left\{x:\left|T_{*}(x)\right|>\lambda\right\} \leq \frac{C}{\lambda}\|f\|_{L^{1}(\mu)}
$$

We can assume that $\lambda>\beta_{0}\|f\|_{L^{1}(\mu)} /\|\mu\|$. Otherwise, there is nothing to prove. We use the same notations as in Proposition 2.5 with R_{i} which is chosen as the smallest $\left(3 \times 6^{2}, C_{\lambda}^{\log _{2} 3 \times 6^{2}+1}\right)$ - doubling ball of the family $\left\{3 \times 6^{2} Q_{i}\right\}_{i}$. Then we can write $f=g+b$, with

$$
g=f \chi_{X \backslash \cup_{i} 6 Q_{i}}+\sum_{i} \varphi_{i}
$$

and

$$
b:=\sum_{i} b_{i}=\sum_{i}\left(w_{i} f-\varphi_{i}\right) .
$$

Taking into account (7), one has

$$
\mu\left(\cup_{i} 6^{2} Q_{i}\right) \leq \frac{C}{\lambda} \sum_{i} \int_{Q_{i}}|f| d \mu \leq \frac{C}{\lambda} \int_{X}|f| d \mu
$$

where in the last inequality we use the pairwise disjoint property of the family $\left\{Q_{i}\right\}_{i}$.
We need only to show that

$$
\mu\left\{x \in X \backslash \cup_{i} 6^{2} Q_{i}:\left|T_{*} f(x)\right|>\lambda\right\} \leq \frac{C}{\lambda} \int_{X}|f| d \mu
$$

We have

$$
\begin{aligned}
\mu\left\{x \in X \backslash \cup_{i} 6^{2} Q_{i}:\left|T_{*} f(x)\right|>\lambda\right\} & \leq \mu\left\{x \in X \backslash \cup_{i} 6^{2} Q_{i}:\left|T_{*} g(x)\right|>\lambda / 2\right\} \\
& +\mu\left\{x \in X \backslash \cup_{i} 6^{2} Q_{i}:\left|T_{*} b(x)\right|>\lambda / 2\right\} \\
& :=I_{1}+I_{2}
\end{aligned}
$$

Note that $|g| \leq C \lambda$. Therefore, the first term I_{1} is dominated by

$$
\frac{C}{\lambda^{2}} \int|g|^{2} d \mu \leq \frac{C}{\lambda} \int|g| d \mu
$$

On the other hand,

$$
\begin{aligned}
\int|g| d \mu & \leq \int_{X \backslash \cup_{i} 6 Q_{i}}|f| d \mu+\sum_{i} \int_{R_{i}}\left|\varphi_{i}\right| d \mu \\
& \leq \int_{X}|f| d \mu+\sum_{i} \mu\left(R_{i}\right)\left\|\varphi_{i}\right\|_{L^{\infty}(\mu)} \\
& \leq \int_{X}|f| d \mu+C \sum_{i} \int_{X}\left|f w_{i}\right| d \mu \leq C \int_{X}|f| d \mu .
\end{aligned}
$$

Therefore,

$$
\mu\left\{x \in X \backslash \cup_{i} 6^{2} Q_{i}:\left|T_{*} g(x)\right|>\lambda / 2\right\} \leq \frac{C}{\lambda} \int|f| d \mu
$$

For I_{2}, we have

$$
\begin{aligned}
I_{2} & \leq \mu\left\{x \in X \backslash \cup_{i} 6^{2} Q_{i}: \sum_{i} \chi_{X \backslash 2 R_{i}}\left|T_{*} b_{i}(x)\right|>\lambda / 6\right\} \\
& +\mu\left\{x \in X \backslash \cup_{i} 6^{2} Q_{i}: \sum_{i} \chi_{2 R_{i} \backslash 6^{2} Q_{i}}\left|T_{*} \varphi_{i}(x)\right|>\lambda / 6\right\} \\
& +\mu\left\{x \in X \backslash \cup_{i} 6^{2} Q_{i}: \sum_{i} \chi_{2 R_{i} \backslash 6^{2} Q_{i}}\left|T_{*}\left(w_{i} f\right)(x)\right|>\lambda / 6\right\} \\
& :=K_{1}+K_{2}+K_{3} .
\end{aligned}
$$

It is easy to estimate the terms K_{2} and K_{3}. Indeed, we have

$$
\begin{aligned}
K_{2} & \leq \frac{C}{\lambda} \sum_{i} \int_{2 R_{i} \backslash 6^{2} Q_{i}}\left|T_{*} \varphi_{i}\right| d \mu \\
& \leq \frac{C}{\lambda} \sum_{i} \int_{2 R_{i}}\left|T_{*} \varphi_{i}\right| d \mu \\
& \leq \frac{C}{\lambda} \sum_{i}\left(\int_{2 R_{i}}\left|T_{*} \varphi_{i}\right|^{2} d \mu\right)^{1 / 2}\left(\mu\left(R_{i}\right)\right)^{1 / 2}
\end{aligned}
$$

Using the L^{2} boundedness of T_{*}, we get that

$$
\begin{aligned}
K_{2} & \leq \frac{C}{\lambda} \sum_{i}\left(\int_{2 R_{i}}\left|\varphi_{i}\right|^{2} d \mu\right)^{1 / 2}\left(\mu\left(R_{i}\right)\right)^{1 / 2} \\
& \leq \frac{C}{\lambda} \sum_{i}\left\|\varphi_{i}\right\|_{L^{\infty}(\mu)} \mu\left(R_{i}\right) \\
& \leq \frac{C}{\lambda} \sum_{i} \int_{X}\left|w_{i} f\right| d \mu=\frac{C}{\lambda} \int_{X}|f| d \mu .
\end{aligned}
$$

and

$$
\begin{aligned}
K_{3} & \leq \frac{C}{\lambda} \sum_{i} \int_{2 R_{i} \backslash 6^{2} Q_{i}} \sup _{\epsilon>0}\left|\int_{d(x, y)>\epsilon} K(x, y)\left(w_{i} f\right)(y) d \mu(y)\right| d \mu(x) \\
& \leq \frac{C}{\lambda} \sum_{i} \int_{2 R_{i} \backslash 6^{2} Q_{i}} \int_{X}|K(x, y)|\left|\left(w_{i} f\right)(y)\right| d \mu(y) d \mu(x) \\
& \leq \frac{C}{\lambda} \sum_{i} \int_{2 R_{i} \backslash 6^{2} Q_{i}} \int_{6 Q_{i}} \frac{1}{\lambda(y, d(x, y))}\left|\left(w_{i} f\right)(y)\right| d \mu(y) d \mu(x) \\
& \leq \frac{C}{\lambda} \sum_{i} \int_{2 R_{i} \backslash 6^{2} Q_{i}} \int_{X} \frac{1}{\lambda\left(x_{Q_{i}}, d\left(x, x_{Q_{i}}\right)\right)}\left|\left(w_{i} f\right)(y)\right| d \mu(y) d \mu(x) \\
& \leq \frac{C}{\lambda} \sum_{i} \int_{2 R_{i} \backslash 6^{2} Q_{i}} \frac{1}{\lambda\left(x_{Q_{i}}, d\left(x, x_{Q_{i}}\right)\right)} d \mu(x) \int_{X}\left|\left(w_{i} f\right)(y)\right| d \mu(y) \\
& \leq \frac{C}{\lambda} \sum_{i} \int_{X}\left|\left(w_{i} f\right)(y)\right| d \mu(y) \quad(\text { due to Lemma 2.6) } \\
& \leq \frac{C}{\lambda} \int_{X}|f| d \mu .
\end{aligned}
$$

We now take care of the term K_{1}. For each i and $x \in X \backslash 2 R_{i}$, we consider three cases:

Case 1. $\epsilon<d\left(x, R_{i}\right): \quad$ We have,

$$
\left|T_{\epsilon} b_{i}(x)\right|=\left|\int_{R_{i}} K(x, y) b_{i}(y) d \mu(y)\right|
$$

Case 2. $\epsilon>d\left(x, R_{i}\right)+2 r_{R_{i}}$: In this situation, it is easy to see that $\left|T_{\epsilon} b_{i}(x)\right|=0$.

Case 3. $d\left(x, R_{i}\right) \leq \epsilon \leq d\left(x, R_{i}\right)+2 r_{R_{i}}$: It can be verified that for $y \in R_{i}$ we have $d(x, y) \geq d\left(x, R_{i}\right) \geq \frac{1}{3}\left(d\left(x, R_{i}\right)+2 r_{R_{i}}\right) \geq \frac{\epsilon}{3}$. Therefore, one has, by (1)

$$
\begin{aligned}
\left|T_{\epsilon} b_{i}(x)\right| & \leq\left|\int_{R_{i}} K(x, y) b_{i}(y) d \mu(y)\right|+\left|\int_{d(x, y) \leq \epsilon} K(x, y) b_{i}(y) d \mu(y)\right| \\
& \leq\left|\int_{R_{i}} K(x, y) b_{i}(y) d \mu(y)\right|+\int_{d(x, y) \leq \epsilon} \frac{C}{\lambda(x, d(x, y))}\left|b_{i}(y)\right| d \mu(y) .
\end{aligned}
$$

Since $\lambda(x, \cdot)$ is increasing and $d(x, y) \geq \frac{\epsilon}{3}$, we can write

$$
\begin{aligned}
\left|T_{\epsilon} b_{i}(x)\right| & \leq\left|\int_{R_{i}} K(x, y) b_{i}(y) d \mu(y)\right|+\int_{B(x, \epsilon)} \frac{C}{\lambda\left(x, \frac{\epsilon}{3}\right)}\left|b_{i}(y)\right| d \mu(y) \\
& \leq\left|\int_{R_{i}} K(x, y) b_{i}(y) d \mu(y)\right|+\int_{B(x, \epsilon)} \frac{C}{\lambda(x, 6 \epsilon)}\left|b_{i}(y)\right| d \mu(y) \\
& \leq\left|\int_{R_{i}} K(x, y) b_{i}(y) d \mu(y)\right|+\frac{C}{\mu(x, 6 \epsilon)} \int_{B(x, \epsilon)}\left|b_{i}(y)\right| d \mu(y)
\end{aligned}
$$

Hence, in general, we have, for each i and $x \in X \backslash 2 R_{i}$,

$$
\left|T_{\epsilon} b_{i}(x)\right| \leq\left|\int_{R_{i}} K(x, y) b_{i}(y) d \mu(y)\right|+\frac{C}{\mu(x, 6 \epsilon)} \int_{B(x, \epsilon)}\left|b_{i}(y)\right| d \mu(y)
$$

It follows that

$$
\begin{array}{r}
\sum_{i} \chi_{X \backslash 2 R_{i}}\left|T_{\epsilon} b_{i}(x)\right| \leq \sum_{i} \chi_{X \backslash 2 R_{i}}\left|\int_{R_{i}} K(x, y) b_{i}(y) d \mu(y)\right| \\
\quad+\sum_{i} \frac{C}{\mu(x, 6 \epsilon)} \int_{B(x, \epsilon)}\left|b_{i}(y)\right| d \mu(y) \\
\leq \sum_{i} \chi_{X \backslash 2 R_{i}}\left|\int_{R_{i}} K(x, y) b_{i}(y) d \mu(y)\right| \\
+C M_{(6)}\left(\sum_{i}\left|b_{i}\right|\right)(x) \leq A_{1}+A_{2}
\end{array}
$$

uniformly in $\epsilon>0$.
So, we can write

$$
\begin{aligned}
K_{1} & =\mu\left\{x \in X \backslash \cup_{i} 6^{2} Q_{i}: \sum_{i} \chi_{X \backslash 2 R_{i}}\left|T_{*} b(x)\right|>\lambda / 6\right\} \\
& \leq \mu\left\{x \in X \backslash \cup_{i} 6^{2} Q_{i}: A_{1}>\lambda / 12\right\}+\mu\left\{x \in X \backslash \cup_{i} 6^{2} Q_{i}: A_{2}>\lambda / 12\right\} \\
& \leq K_{11}+K_{12} .
\end{aligned}
$$

For the term K_{11}, using $\int b_{i} d \mu=0$ and (2), we have

$$
\begin{aligned}
K_{11} & \leq \frac{C}{\lambda} \sum_{i} \int_{X \backslash 2 R_{i}}\left|\int_{R_{i}} K(x, y) b_{i}(y) d \mu(y)\right| d x \\
& \leq \frac{C}{\lambda} \sum_{i} \int_{X \backslash 2 R_{i}}\left|\int_{R_{i}}\left(K(x, y)-K\left(x, x_{R_{i}}\right)\right) b_{i}(y) d \mu(y)\right| d \mu(x) \\
& \leq \frac{C}{\lambda} \sum_{i} \int_{X \backslash 2 R_{i}} \int_{R_{i}}\left|\left(K(x, y)-K\left(x, x_{R_{i}}\right)\right) b_{i}(y)\right| d \mu(y) d \mu(x) \\
& \leq \frac{C}{\lambda} \sum_{i} \int_{X \backslash 2 R_{i}} \int_{R_{i}} \frac{d\left(y, x_{R_{i}}\right)^{\delta}}{d(x, y)^{\delta} \lambda(x, d(x, y))}\left|b_{i}(y)\right| d \mu(y) d \mu(x) \\
& \leq \frac{C}{\lambda} \sum_{i} \int_{X \backslash 2 R_{i}} \int_{R_{i}} \frac{r_{R_{i}}^{\delta}}{d\left(x, x_{R_{i}}\right)^{\delta} \lambda\left(x, d\left(x, x_{R_{i}}\right)\right)}\left|b_{i}(y)\right| d \mu(y) d \mu(x) \\
& \leq \frac{C}{\lambda} \sum_{i} \int_{X \backslash 2 R_{i}} \frac{r_{R_{i}}^{\delta}}{d\left(x, x_{R_{i}}\right)^{\delta} \lambda\left(x, d\left(x, x_{R_{i}}\right)\right)} d \mu(x) \int_{R_{i}}\left|b_{i}(y)\right| d \mu(y) .
\end{aligned}
$$

By decomposing $X \backslash 2 R_{i}$ into the annuli associated to the ball R_{i}, we can show that

$$
\int_{X \backslash 2 R_{i}} \frac{r_{R_{i}}^{\delta}}{d\left(x, x_{R_{i}}\right)^{\delta} \lambda\left(x, d\left(x, x_{R_{i}}\right)\right)} d \mu(x) \leq C
$$

for all i.
Therefore, we can dominate the term K_{11} by

$$
\begin{aligned}
K_{11} & \leq \frac{C}{\lambda} \sum_{i} \int_{R_{i}}\left|b_{i}(y)\right| d \mu(y) \\
& \leq \frac{C}{\lambda} \sum_{i} \int_{R_{i}}\left|\varphi_{i}\right| d \mu(y)+\frac{C}{\lambda} \sum_{i} \int_{X}\left|w_{i} f\right| d \mu(y) \\
& \leq \frac{C}{\lambda} \sum_{i} \int_{X}\left|w_{i} f\right| d \mu(y) \leq \frac{C}{\lambda} \int_{X}|f| d \mu
\end{aligned}
$$

We now proceed with K_{12}. Since $M_{(6)}(\cdot)$ is of type weak $(1,1)$, we have

$$
\begin{aligned}
K_{12} & \leq \frac{C}{\lambda} \sum_{i} \int_{X}\left|b_{i}\right| d \mu \\
& \leq \frac{C}{\lambda} \sum_{i}\left(\int_{X}\left|\varphi_{i}\right| d \mu+\int_{X}\left|w_{i} f\right| d \mu\right) \\
& \leq \frac{C}{\lambda} \sum_{i} \int_{X}\left|w_{i} f\right| d \mu \leq \frac{C}{\lambda} \int_{X}|f| d \mu
\end{aligned}
$$

This completes our proof.
3.2. Boundedness of the maximal commutators. In this section we restrict ourself to consider the spaces (X, μ) in which $\lambda(x, a r)=a^{m} \lambda(x, r)$ for all $x \in X$ and $a, r>0$ for some m. Recall that in such spaces (X, μ), $K_{B, Q} \approx K_{B, Q}^{\prime}$ for all balls $B \subset Q$.

For $b \in \operatorname{RBMO}(\mu)$, we defined the maximal commutator $T_{*, b}$ by

$$
T_{*, b} f(x)=\max _{\epsilon>0}\left|T_{\epsilon, b} f(x)\right|=\max _{\epsilon>0}\left|\int_{d(x, y)>\epsilon}(b(x)-b(y)) K(x, y) f(y) d \mu(y)\right| .
$$

As mentioned earlier, one problem in studying the boundedness of the maximal commutators is that the kernel of T_{*} may not be a Calderón-Zygmund kernel. This causes certain difficulties in estimating maximal commutators $T_{*, b}$. To overcome this problem, we will exploit the ideas in [8].

Let ϕ and ψ be C^{∞} non-negative functions such that $\phi^{\prime}(t) \leq \frac{C}{t}, \psi^{\prime}(t) \leq \frac{C}{t}$ and $\chi_{[2, \infty)} \leq \phi \leq \chi_{[1, \infty)}, \chi_{[0,1 / 2)} \leq \psi \leq \chi_{[0,3)}$. Associated to ϕ, ψ and T, we introduced the maximal operators:

$$
T_{*}^{\phi} f(x)=\sup _{\epsilon>0}\left|T_{\epsilon}^{\phi} f(x)\right|=\sup _{\epsilon>0}\left|\int_{X} K(x, y) \phi\left(\frac{d(x, y)}{\epsilon}\right) f(y) d \mu(y)\right|
$$

and

$$
T_{*}^{\psi} f(x)=\sup _{\epsilon>0}\left|T_{\epsilon}^{\psi} f(x)\right|=\sup _{\epsilon>0}\left|\int_{X} K(x, y) \psi\left(\frac{d(x, y)}{\epsilon}\right) f(y) d \mu(y)\right| .
$$

It is not difficult to show that

$$
\max \left\{T_{\epsilon}^{\phi} f(x), T_{\epsilon}^{\psi} f(x)\right\} \leq T_{*} f(x)+C M_{(5)} f(x) .
$$

Hence T_{*}^{ϕ} and T_{*}^{ψ} are bounded on $L^{p}(\mu), 1<p<\infty$.
Define the maximal commutators associated with T_{ϵ}^{ϕ} and T_{ϵ}^{ψ} by setting

$$
\begin{aligned}
T_{*, b}^{\phi} f(x) & =\max _{\epsilon>0}\left|T_{\epsilon, b}^{\phi} f(x)\right| \\
& =\max _{\epsilon>0}\left|\int_{X}(b(x)-b(y)) K(x, y) \phi\left(\frac{d(x, y)}{\epsilon}\right) f(y) d \mu(y)\right|
\end{aligned}
$$

and

$$
\begin{aligned}
T_{*, b}^{\psi} f(x) & =\max _{\epsilon>0}\left|T_{\epsilon, b}^{\psi} f(x)\right| \\
& =\max _{\epsilon>0}\left|\int_{X}(b(x)-b(y)) K(x, y) \psi\left(\frac{d(x, y)}{\epsilon}\right) f(y) d \mu(y)\right|
\end{aligned}
$$

It is not hard to show that

$$
\begin{equation*}
T_{*, b} f \leq T_{*, b}^{\phi} f+T_{*, b}^{\psi} f \tag{13}
\end{equation*}
$$

We are now in position to establish the boundedness of the maximal commutator $T_{*, b}$.

Theorem 3.3. Let T be a Calderón-Zygmund operator. If T is bounded on $L^{2}(\mu)$ then the maximal commutator $T_{*, b}$ is bounded on $L^{p}(\mu)$ for all $1<p<\infty$. More precisely, there exists a constant $C>0$ such that

$$
\left\|T_{*, b} f\right\|_{L^{p}(\mu)} \leq C\|b\|_{\operatorname{RBMO}(\mu)}\|f\|_{L^{p}(\mu)}
$$

for all $f \in L^{p}(\mu)$.

Proof. We will show that there exists a constant $C>0$ such that

$$
\left\|T_{*, b} f\right\|_{L^{p}(\mu)} \leq C\|b\|_{\operatorname{RBMO}(\mu)}\|f\|_{L^{p}(\mu)}
$$

for all $f \in L^{p}(\mu)$.
From (13), we need only to show that for $p>1$, we have

$$
\begin{equation*}
\left\|T_{*, b}^{\phi} f\right\|_{L^{p}(\mu)} \leq C\|b\|_{\operatorname{RBMO}(\mu)}\|f\|_{L^{p}(\mu)} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|T_{*, b}^{\psi} f\right\|_{L^{p}(\mu)} \leq C\|b\|_{\operatorname{RBMO}(\mu)}\|f\|_{L^{p}(\mu)} \tag{15}
\end{equation*}
$$

The proofs of (14) and (15) are completely analogous. So, we only deal with (14).

For each ball $B \subset X$, we denote

$$
h_{B}:=-m_{B}\left(T_{*}^{\phi}\left(\left(b-b_{B}\right) f \chi_{X \backslash \frac{6}{5} B}\right)\right.
$$

As in the proof of [9, Thorem 9.1] (see also [1, Theorem 5.9]), it suffices to claim that for all balls $x \in Q \subset R$

$$
\begin{equation*}
\frac{1}{\mu(6 Q)} \int_{Q}\left|T_{*, b}^{\phi} f-h_{Q}\right| d \mu \leq C\|b\|_{\mathrm{RBMO}}\left(M_{p, 5} f(x)+M_{p, 6} T_{*}^{\phi} f(x)\right) \tag{16}
\end{equation*}
$$

for all x and B with $x \in B$, and

$$
\begin{equation*}
\left|h_{Q}-h_{R}\right| \leq C\|b\|_{\mathrm{RBMO}}\left(M_{p, 5} f(x)+T_{*}^{\phi} f(x)\right) K_{Q, R}^{2} \tag{17}
\end{equation*}
$$

To estimate (16), we write

$$
\begin{aligned}
\left|T_{*, b}^{\phi} f-h_{Q}\right| & =\left|\left(b-b_{Q}\right) T_{*}^{\phi} f-T_{*}^{\phi}\left(\left(b-b_{Q}\right) f\right)-h_{Q}\right| \\
& \leq\left|\left(b-b_{Q}\right) T_{*}^{\phi} f\right|+\left|T_{*}^{\phi}\left(\left(b-b_{Q}\right) f_{1}\right)\right|+\left|T_{*}^{\phi}\left(\left(b-b_{Q}\right) f_{2}\right)+h_{Q}\right|
\end{aligned}
$$

where $f_{1}=f \chi_{\frac{6}{5} Q}$ and $f_{2}=f-f_{1}$. For the first term, by Hölder inequality, we have

$$
\begin{aligned}
\frac{1}{\mu(6 Q)} \int_{Q}\left|\left(b-b_{Q}\right) T_{*}^{\phi} f\right| d \mu \leq & \left(\frac{1}{\mu(6 Q)} \int_{Q}\left|\left(b-b_{Q}\right)\right|^{p^{\prime}} d \mu\right)^{1 / p^{\prime}} \\
& \times\left(\frac{1}{\mu(6 Q)} \int_{Q}\left|T_{*}^{\phi} f\right|^{p} d \mu\right)^{1 / p} \\
\leq & C\|b\|_{\operatorname{RBMO}(\mu)} M_{(6)} T_{*}^{\phi} f(x)
\end{aligned}
$$

For the second term, by Hölder inequality and the uniform boundedness of T_{*}^{ϕ} on $L^{p}(\mu)$, we have

$$
\frac{1}{\mu(6 Q)} \int_{Q}\left|T_{*}^{\phi}\left(\left(b-b_{Q}\right) f_{1}\right)\right| d \mu \leq C\|b\|_{\operatorname{RBMO}(\mu)} M_{p, 5} f(x)
$$

Let us take care of the third term. For $x, y \in Q$ and $\epsilon>0$, we write

$$
\begin{aligned}
& \left|T_{\epsilon}^{\phi}\left(\left(b-b_{Q}\right) f_{2}\right)(x)-T_{\epsilon}^{\phi}\left(\left(b-b_{Q}\right) f_{2}\right)(y)\right| \\
& =\left|\int_{X \backslash \frac{6}{5} Q}\left(K(x, z) \phi\left(\frac{d(x, z)}{\epsilon}\right)-K(y, z) \phi\left(\frac{d(y, z)}{\epsilon}\right)\right)\left(b(z)-b_{Q}\right) f(z) d \mu(z)\right| \\
& \leq\left|\int_{X \backslash \frac{6}{5} Q}(K(x, z)-K(y, z)) \phi\left(\frac{d(x, z)}{\epsilon}\right)\left(b(z)-b_{Q}\right) f(z) d \mu(z)\right| \\
& +\left|\int_{X \backslash \frac{6}{5} Q} K(y, z)\left(\phi\left(\frac{d(y, z)}{\epsilon}\right)-\phi\left(\frac{d(x, z)}{\epsilon}\right)\right)\left(b(z)-b_{Q}\right) f(z) d \mu(z)\right| \\
& \leq A_{1}+A_{2} .
\end{aligned}
$$

For the term A_{1}, by (2), we have

$$
\begin{align*}
A_{1} & \leq \int_{X \backslash \frac{6}{5} Q}\left|K(x, z)-K(y, z) \|\left(b(z)-b_{Q}\right) f(z)\right| d \mu(z) \tag{18}\\
& \leq C \int_{X \backslash \frac{6}{5} Q} \frac{d(x, y)^{\delta}}{d(x, z)^{\delta} \lambda(x, d(x, y))}\left|\left(b(z)-b_{Q}\right) f(z)\right| d \mu(z) \\
& \leq C \sum_{k=0}^{\infty} \int_{6^{k+1} Q \backslash 6^{k} Q} \frac{d(x, y)^{\delta}}{d(x, z)^{\delta} \lambda(x, d(x, y))}\left|\left(b(z)-b_{Q}\right) f(z)\right| d \mu(z) \\
& \leq C \sum_{k=0}^{\infty} 6^{-k \delta} \int_{6^{k+1} Q} \frac{1}{\lambda\left(x_{Q}, 6^{k} r_{Q}\right)}\left|\left(b(z)-b_{Q}\right) f(z)\right| d \mu(z) \\
& \leq C \sum_{k=0}^{\infty} 6^{-k \delta} \int_{6^{k+1} Q} \frac{1}{\lambda\left(x_{Q}, 6^{k} r_{Q}\right)}\left|\left(b(z)-b_{Q}\right) f(z)\right| d \mu(z) \\
& \leq C \sum_{k=0}^{\infty} 6^{-k \delta} \frac{1}{\mu\left(5 \times 6^{k} Q\right)} \int_{6^{k+1} Q}\left|\left(b(z)-b_{6^{k+1} Q}\right) f(z)\right| d \mu(z) \\
& +C \sum_{k=0}^{\infty} 6^{-k \delta} \frac{1}{\mu\left(5 \times 6^{k} Q\right)} \int_{6^{k+1} Q}\left|\left(b_{6^{k+1} Q}-b_{Q}\right) f(z)\right| d \mu(z) \\
& \leq C \sum_{k=0}^{\infty} 6^{-k \delta}\|b\|_{\mathrm{RBMO}(\mu)} M_{(5)} f(x)+C \sum_{k=0}^{\infty}(k+1) 6^{-k \delta}\|b\|_{\mathrm{RBMO}(\mu)} M f(x) \\
& =C\|b\|_{\mathrm{RBMO}(\mu)} M_{(5)} f(x) .
\end{align*}
$$

Since $\phi^{\prime}(t) \leq \frac{C}{t}$, for $z \in 6^{k+1} \frac{6}{5} Q \backslash 6^{k} \frac{6}{5} Q$ and $x, y \in Q$,

$$
\phi\left(\frac{d(y, z)}{\epsilon}\right)-\phi\left(\frac{d(x, z)}{\epsilon}\right) \leq C \frac{d(x, y)}{d\left(z, x_{Q}\right)} \leq C 6^{-(k+1)}
$$

From this estimate, we obtain that

$$
\begin{aligned}
A_{2} & \leq \sum_{k=0}^{\infty} \int_{6^{k+1} \frac{6}{5} Q \backslash 6^{k} \frac{6}{5} Q}\left|K(y, z)\left(\phi\left(\frac{d(y, z)}{\epsilon}\right)-\phi\left(\frac{d(x, z)}{\epsilon}\right)\right)\right| \\
& \times C \sum_{k=0}^{\infty} 6^{-k} \int_{6^{k+1} \frac{6}{5} Q \backslash 6^{k} \frac{6}{5} Q} \frac{1}{\lambda\left(y, b_{Q}\right) f(z) \mid d \mu(z)}(y(y, z)) \\
& \left.\leq C \sum_{k=0}^{\infty} 6^{-k} \int_{6^{k+1} \frac{6}{5} Q \backslash 6^{k} \frac{6}{5} Q} \frac{1}{\lambda\left(x_{Q}, 6^{k} r_{Q}\right)}\left(b(z)-b_{Q}\right) f(z) \right\rvert\, d \mu(z) .
\end{aligned}
$$

At this stage, repeating the argument as in (18), we also obtain that $A_{2} \leq$ $C\|b\|_{\mathrm{RBMO}(\mu)} M_{(5)} f(x)$. This together with (18) gives for all $x, y \in Q$

$$
\left|T_{\epsilon}^{\phi}\left(\left(b-b_{Q}\right) f_{2}\right)(x)-T_{\epsilon}^{\phi}\left(\left(b-b_{Q}\right) f_{2}\right)(y)\right| \leq C\|b\|_{\operatorname{RBMO}(\mu)} M_{p, 5} f(x)
$$

uniformly in ϵ. Taking the mean value inequality above over the ball Q with respect to y, we have

$$
\frac{1}{\mu(6 Q)} \int_{Q}\left|T_{*}^{\phi}\left(\left(b-b_{Q}\right) f_{2}\right)+h_{Q}\right| d \mu \leq C\|b\|_{\mathrm{RBMO}(\mu)} M_{(5)} f(x) .
$$

for all $\epsilon>0$. Therefore, the proof of (16) is complete.
It remains to check (17). For two balls $Q \subset R$, let N be an integer number such that ($N-1$) is the smallest number satisfying $r_{R} \leq 6^{N-1} r_{Q}$. Then, we break the term $\left|h_{Q}-h_{R}\right|$ into five terms:

$$
\begin{aligned}
& \left\lvert\, m_{Q}\left(T_{*}^{\phi}\left(\left(b-b_{Q}\right) f \chi_{X \backslash \frac{6}{5} Q}\right)-m_{R}\left(\left.T_{*}^{\phi}\left(\left(b-b_{R}\right) f \chi_{X \backslash \frac{6}{5} R}\right) \right\rvert\,\right.\right.\right. \\
& \quad \leq \left\lvert\, m_{Q}\left(T _ { * } ^ { \phi } ((b - b _ { Q }) f \chi _ { 6 Q \backslash \frac { 6 } { 5 } Q }) | + | m _ { Q } \left(T_{*}^{\phi}\left(\left(b_{Q}-b_{R}\right) f \chi_{X \backslash 6 Q}\right) \mid\right.\right.\right. \\
& \quad+\mid m_{Q}\left(T_{*}^{\phi}\left(\left(b-b_{R}\right) f \chi_{6^{N} Q \backslash 6 Q}\right) \mid\right. \\
& \quad+\mid m_{Q}\left(T_{*}^{\phi}\left(\left(b-b_{R}\right) f \chi_{X \backslash 6^{N} Q}\right)-m_{R}\left(T_{*}^{\phi}\left(\left(b-b_{R}\right) f \chi_{X \backslash 6^{N} Q}\right) \mid\right.\right. \\
& \quad+\left\lvert\, m_{R}\left(T_{*}^{\phi}\left(\left(b-b_{R}\right) f \chi_{6^{N} Q \backslash \frac{6}{5} R}\right)\right.\right. \\
& \quad=M_{1}+M_{2}+M_{3}+M_{4}+M_{5} .
\end{aligned}
$$

Let us estimate M_{1} first. For $y \in Q$ we have, by Proposition 3.2

$$
\begin{aligned}
& \left|T_{*}^{\phi}\left(\left(b-b_{Q}\right) f \chi_{6 Q \backslash \frac{5}{5} Q}\right)(x)\right| \\
& \leq \\
& \leq \frac{C}{\lambda\left(x, r_{Q}\right)} \int_{6 Q}\left|b-b_{Q}\right||f| d \mu \\
& \leq \\
& \quad \frac{\mu(30 Q)}{\lambda\left(x, 30 r_{Q}\right)}\left(\left.\frac{1}{\mu(5 \times 6 Q)} \int_{6 Q}\left|b-b_{Q}\right|\right|^{p^{\prime}} d \mu\right)^{1 / p^{\prime}} \\
& \quad \times\left(\frac{1}{\mu(5 \times 6 Q)} \int_{6 Q}|f|^{p} d \mu\right)^{1 / p} \\
& \quad \leq C\|b\|_{\operatorname{RBMO}} M_{p, 5} f(x) .
\end{aligned}
$$

Likewise, $M_{5} \leq\|b\|_{\text {RBMO }} M_{p, 5} f(x)$. Hence, we have

$$
M_{1}+M_{5} \leq C\|b\|_{\mathrm{RBMO}} M_{p, 5} f(x) .
$$

For the term M_{2}, it is verified that for $x, y \in Q$

$$
\left|T_{*}^{\phi} f \chi_{X \backslash 6 Q}(y)\right| \leq T_{*}^{\phi} f(x)+C M_{p, 5} f(x)
$$

This implies

$$
\mid m_{Q}\left(T_{*}^{\phi}\left(\left(b_{Q}-b_{R}\right) f \chi_{X \backslash 6 Q}\right) \mid \leq C K_{Q, R}\left(T_{*}^{\phi} f(x)+M_{p, 5} f(x)\right) .\right.
$$

As in estimates A_{1} and A_{2}, one gets that

$$
M_{4} \leq C\|b\|_{\mathrm{RBMO}} M_{p, 5} f(x) .
$$

For the last term M_{3}, we have, for $y \in Q$,
(19) $\left\lvert\, T_{\epsilon}^{\phi}\left(\left.\left(b-b_{R}\right) f \chi_{6^{N} Q \backslash 6 Q}(y)\left|\leq C \sum_{k=1}^{N-1} \frac{1}{\lambda\left(y, 6^{k} r_{Q}\right)} \int_{6^{k+1 Q} \backslash 6^{k} Q}\right| b-b_{R}| | f \right\rvert\, d \mu\right.$. \right.

Since $\left|b-b_{R}\right| \leq\left|b-b_{6^{k+1} Q}\right|+\left|b_{R}-b_{6^{k+1} Q}\right|$, further going we have

$$
\begin{align*}
& \mid T_{\epsilon}^{\phi}\left(\left(b-b_{R}\right) f \chi_{6^{N} Q \backslash 6 Q}(y) \mid\right. \\
& \leq C \sum_{k=1}^{N-1} \frac{1}{\lambda\left(y, 6^{k} r_{Q}\right)}\left[\int_{6^{k+1} Q \backslash 6^{k} Q}\left|b-b_{6^{k+1} Q}\right||f| d \mu\right. \\
& \left.\quad+\int_{6^{k+1 Q} \backslash 6^{k} Q}\left|b_{R}-b_{6^{k+1} Q}\right||f| d \mu\right] \\
& \leq C \sum_{k=1}^{N-1} \frac{\mu\left(5 \times 6^{k+1} Q\right)}{\lambda\left(x_{Q}, 6^{k} r_{Q}\right)}\left[\frac{1}{\mu\left(6^{k+2} Q\right)} \int_{{ }_{6}{ }^{k+1} Q \backslash 6^{k} Q}\left|b-b_{6^{k+1} Q}\right||f| d \mu\right. \\
& \left.\quad+\frac{1}{\mu\left(5 \times 6^{k+1} Q\right)} \int_{6^{k+1} Q \backslash 6^{k} Q}\left|b_{R}-b_{6^{k+1} Q}\right||f| d \mu\right] \tag{20}
\end{align*}
$$

By Hölder inequality and the similar argument in estimate the term M_{4} we have

$$
\frac{1}{\mu\left(5 \times 6^{k+2} Q\right)} \int_{6^{k+1} Q \backslash 6^{k} Q}\left|b-b_{6^{k+1} Q}\right||f| d \mu \leq\|b\|_{\mathrm{RBMO}} M_{p, 5} f(x)
$$

and

$$
\frac{1}{\mu\left(5 \times 6^{k+1} Q\right)} \int_{6^{k+1} Q \backslash 6^{k} Q}\left|b_{R}-b_{6^{k+1} Q}\left\|f \mid d \mu \leq C K_{Q, R}\right\| b \|_{\mathrm{RBMO}} M_{p, 5} f(x) .\right.
$$

These two above estimates together with (19) give

$$
\mid T_{\epsilon}^{\phi}\left(\left(b-b_{R}\right) f \chi_{6^{N} Q \backslash 6 Q}(y) \mid \leq C K_{Q, R}^{2}\|b\|_{\mathrm{RBMO}} M_{p, 5} f(x)\right.
$$

uniformly in $\epsilon>0$.
It follows that $M_{3} \leq C K_{Q, R}^{2}\|b\|_{\mathrm{RBMO}} M_{p, 5} f(x)$. From the estimates of $M_{1}, M_{2}, M_{3}, M_{4}$ and M_{5}, (17) follows. This completes our proof.

Acknowledgement

The author would like to thank the referee for his comments and suggestions to improve the paper.

References

1. T. A. Bui and X. T. Duong, Hardy spaces, Regularized BMO spaces and the boundedness of Calderón-Zygmund operators on non-homogeneous spaces, to appear in Journal of Geometric Analysis.
2. T. Hytönen, A framework for non-homogenous analysis on metric spaces, and RBMO spaces of Tolsa, Publ. Mat. 54 (2010), 485504.
3. F. Nazarov, S. Treil and A. Volberg, Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices 15 (1997), 703-26.
4. F. Nazarov, S. Treil and A. Volberg, Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices 9 (1998), 463-487.
5. F. Nazarov, S. Treil and A. Volberg, The $T b$-theorem on non-homogeneous spaces, Acta Math. 190 (2003), 151-239.
6. J. Mateu, P. Mattila, A. Nicolau, J. Orobitg, BMO for non doubling measures, Duke Math. J. 102 (2000), 533-565.
7. E.M. Stein, Harmonic analysis: Real variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, (1993).
8. C. Segovia and J. L. Torrea, Vector-valued commutators and applications, Idiana Univ. Math. J. 38 (1989), 959-971.
9. X. Tolsa, BMO, H^{1}, and Calderón-Zygmund operators for non doubling measures, Math. Ann. 219 (2001), 89-149.
10. X. Tolsa, A proof of the weak $(1,1)$ inequality for singular integrals with non doubling measures based on a Calderon-Zygmund decomposition, Publ. Mat. 45 (2001), 163-174
11. J. Verdera, On the $T(1)$ theorem for the Cauchy integral, Ark. Mat. 38 (2000), 183-199

Department of Mathematics, Macquarie University, NSW 2109, Australia
Department of Mathematics, University of Pedagogy, HoChiMinh City, Vietnam

E-mail address: the.bui@mq.edu.au, bt_anh80@yahoo.com

[^0]: 2010 Mathematics Subject Classification. Primary 42B20; Secondary 42B35.
 Key words and phrases. space of non-homogeneous type, RBMO, Calderón - Zygmund operator.

