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Abstract. Let (X,µ) be a non-homogeneous space in the sense that X
is a metric space equipped with an upper doubling measure µ. The aim
of this paper is to study the endpoint estimate of the maximal operator
associated to a Calderón-Zygmund operator T and the Lp boundedness
of the maximal commutator with RBMO functions

1. Introduction

Let (X, d, µ) be a geometrically doubling regular metric space and have an
upper doubling measure, that is, µ is dominated by a function λ (see Section
2 for precise definition). A kernel K(·, ·) ∈ L1

loc(X ×X\{(x, y) : x = y}) is
called a Calderón-Zygmund kernel if the following two conditions hold:

(i) K satisfies the estimates

(1) |K(x, y)| ≤ C min
{ 1

λ(x, d(x, y))
,

1

λ(y, d(x, y))

}
;

(ii) there exists 0 < δ ≤ 1 such that

(2) |K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ C d(x, x′)δ

d(x, y)δλ(x, d(x, y))

whenever d(x, x′) ≤ d(x, y)/2.

In what follows, by the associate kernel of a linear operator T , we shall
mean the function K(·, ·) defined off-diagonal {(x, y) ∈ X ×X : x 6= y} so
that

Tf(x) =

ˆ
X
K(x, y)f(y)dµ(y),

holds for all f ∈ L∞(µ) with bounded support and x /∈ suppf .
A linear operator T is called a Calderón-Zygmund operator if its associate

kernel K(·, ·) satisfies (1) and (2).
In [1] the authors studied the boundedness of Calderón-Zygmund oper-

ators and their commutators with RBMO functions. It was proved that if
the Calderón-Zygmund operator T is bounded on L2(µ) then T is of weak
type (1, 1) and hence T is bounded on Lp(µ) for all 1 < p < ∞. More-
over, Lp boundedness of the commutators of Calderón-Zygmund operators
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with RBMO functions for 1 < p < ∞ was also obtained in [1]. The ob-
tained results in [1] can be viewed as extensions of those in [9] to spaces of
non-homogenous type.

In this paper, we consider the maximal operator T∗ associated with the
Calderón-Zygmund operator T defined by

T∗f(x) = sup
ε>0
|Tεf(x)|,

where Tεf(x) =

ˆ
d(x,y)≥ε

K(x, y)f(y)dµ(y). Note that in [1], thanks to Cot-

lar inequality, it was proved that the maximal operator T∗ is bounded on
Lp(µ) for all 1 < p < ∞. The aim of this paper is to prove the following
results:

• T∗ is of weak type (1, 1);
• The commutator of T∗ with an RBMO function is bounded on Lp(µ)

for 1 < p <∞.

Note that since the kernel Kε(x, y) = K(x, y)χ{d(x,y)>ε}(x, y) may not
satisfy the condition (2), the Calderón-Zygmund theory may not be appli-
cable to this situation. To overcome this problem, we use the smoothing
technique in [8] by replacing Kε(x, y) by some new “smooth” kernels. For
detail, we refer to Section 3.2.

The organization of our paper as follows. Section 2 recalls the concept
of RBMO space and the Calderón-Zygmund decomposition. Section 3 will
be devoted to study the boundedness of the maximal operator T∗ and the
maximal commutator of T∗ with an RBMO function. It will be shown that
T∗ is of type weak (1, 1) and the maximal commutator T∗,b is bounded on
Lp(µ) for all 1 < p <∞.

2. RBMO(µ) and Calderón-Zygmund decomposition

Let (X, d) be a metric space. We first review two concepts introduced in
[2].

Geometrically doubling regular metric spaces. (X, d) is geomet-
rically doubling if there exists a number N ∈ N such that every open ball
B(x, r) = {y ∈ X : d(y, x) < r} can be covered by at most N balls of radius
r/2. We use this somewhat non-standard name to clearly differentiate this
property from other types of doubling properties. If there is no specification,
the ball B means the ball center xB with radius rB. Also, we set n = log2N ,
which can be viewed as (an upper bound for) a geometric dimension of the
space.

Upper doubling measures. A metric measure space (X, d, µ) is said
to be upper doubling measure if there exists a dominating function λ with
the following properties:

(i) λ : X × (0,∞) 7→ (0,∞);
(ii) for x ∈ X, r 7→ λ(x, r) is increasing;

(iii) there exists a constant Cλ > 0 such that

λ(x, 2r) ≤ Cλλ(x, r)

for all x ∈ X and r > 0;
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(iv) and the following inequality holds

µ(x, r) ≤ λ(x, r)

for all x ∈ X and r > 0, where µ(x, r) = µ(B(x, r)).
(v) λ(x, r) ≈ λ(y, r) for all r > 0;x, y ∈ X and d(x, y) ≤ r.
Throughout the paper, we always assume that (X, d, µ) is geometrically

doubling regular metric spaces and the measure µ is upper doubling mea-
sures.

For α, β > 1, a ball B ⊂ X is called (α, β)-doubling if µ(αB) ≤ βµ(B).
The following result asserts the existence of a lot of small and big doubling
balls.

Lemma 2.1 ([2]). The following statements hold:

(i) If β > C
log2 α
λ , then for any ball B ⊂ X there exists j ∈ N such that

αjB is (α, β)-doubling.
(ii) If β > αn, here n is doubling order of λ, then for any ball B ⊂ X there

exists j ∈ N such that α−jB is (α, β)-doubling.

For any two balls B ⊂ Q, we defined

(3) KB,Q = 1 +

ˆ
rB≤d(x,xB)≤rQ

1

λ(xB, d(x, xB))
dµ(x).

We have the following properties.

Lemma 2.2. (i) If Q ⊂ R ⊂ S are balls in X, then

max{KQ,R,KR,S} ≤ KQ,S ≤ C(KQ,R +KR,S).

(ii) If Q ⊂ R are comparable size, then KQ,R ≤ C.
(iii) If αQ, . . . αN−1Q are non (α, β)-doubling balls (with β > C

log2 α
λ ) then

KQ,αNQ ≤ C.

The proof of Lemma 2.2 is not difficult and we omit the details here.

Associated to two balls B ⊂ Q, the coefficient K ′B,Q can be defined as

follows: let NB,Q be the smallest integer satisfying 6NB,QrB ≥ rQ, then we
set

(4) K ′B,Q := 1 +

NB,Q∑
k=1

µ(6kB)

λ(xB, 6krB)
.

In general, it is not difficult to show that KB,Q ≤ CK ′B,Q. In the particular

case when λ satisfies λ(x, ar) = amλ(x, r) for all x ∈ X and a, r > 0 for
some m > 0, we have KB,Q ≈ K ′B,Q.

2.1. Definition of RBMO(µ). Adapting to definition of RBMO spaces of
Tolsa in [9], T. Hytönen introduced the RBMO(µ), see [2].
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Definition 2.3. Fix a parameter ρ > 1. A function f ∈ L1
loc(µ) is said to

be in the space RBMO(µ) if there exists a number C, and for every ball B,
a number fB such that

(5)
1

µ(ρB)

ˆ
B
|f(x)− fB|dµ(x) ≤ C

and, whenever B,B1 are two balls with B ⊂ B1, one has

(6) |fB − fB1 | ≤ CKB,B1 .

The infimum of the values C in (6) is taken to be the RBMO norm of f and
denoted by ‖f‖RBMO(µ).

The RBMO norm ‖·‖RBMO(µ) is independent of ρ > 1. Moreover the John-
Nirenberg inequality holds for RBMO(µ). Precisely, we have the following
result, see Corollary 6.3 in [2].

Proposition 2.4. For any ρ > 1 and p ∈ [1,∞), there exists a constant C
so that for every f ∈ RBMO(µ) and every ball B0,( 1

µ(ρB0)

ˆ
B0

|f(x)− fB0 |pdµ(x)
)1/p

≤ C‖f‖RBMO(µ).

2.2. Calderón-Zygmund decomposition. In non-doubling setting, the
Calderón-Zygmund decomposition in Rn was first investigated by [9] and
then was generalized to the general case of non-homogeneous spaces (X,µ)
by [1].

Proposition 2.5. (Calderón-Zygmund decomposition) For any f ∈ L1(µ)
and any λ > 0 (with λ > β0||f ||L1(µ)/||µ|| if ||µ|| <∞) we have:

(a) There exists a family of finite disjoint balls {6Qi}i such that the
family of balls {Qi}i is pairwise disjoint and

(7)
1

µ(62Qi)

ˆ
Qi

|f |dµ > λ

β0
,

(8)
1

µ(η2Qi)

ˆ
η
6
Qi

|f |dµ ≤ λ

β0
, for all η > 6,

(9) |f | ≤ λ a.e. (µ) on Rd\
⋃
i

6Qi.

(b) For each i, let Ri be a (3× 62, C
log2 3×62+1
λ )- doubling ball concentric

with Qi, with l(Ri) > 62l(Qi) and we denote ωi =
χ6Qi∑
k χ6Qk

. Then

there exists a family of functions ϕi with constant signs and supp
(ϕi) ⊂ Ri satisfying

(10)

ˆ
ϕidµ =

ˆ
6Qi

fωidµ,

(11)
∑
i

|ϕi| ≤ Bλ,
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(where B is some constant), and:

(12) ||ϕi||∞µ(Ri) ≤ C
ˆ
X
|wif |dµ.

We will end this section by the following lemma which is useful in the
sequel, see [1].

Lemma 2.6. For any two concentric balls Q ⊂ R such that there are no

(α, β)-doubling balls β > C
log2 α
λ of the form αkQ, k ∈ N such that Q ⊂

αkQ ⊂ R, we have ˆ
R\Q

1

λ(xQ, d(xQ, x))
dµ(x) ≤ C.

3. Boundedness of maximal operator T∗ and maximal
commutator

3.1. The weak type of (1, 1) of T∗. In [1], the Cotlar inequality is ob-
tained. More precisely, we have the following result.

Theorem 3.1. Let T be a L2 bounded Calderón-Zygmund operator. Then
there exist C > 0 and 0 < η < 1 such that for any bounded function with
bounded support f and x ∈ X we have

T∗f(x) ≤ C
(
Mη,6(Tf)(x) +M(6)f(x)

)
.

where

M(ρ) = sup
Q3x

1

µ(ρQ)

ˆ
Q
|f |dµ

and

Mp,ρf(x) = sup
Q3x

( 1

µ(ρQ)

ˆ
Q
|f |pdµ

)1/p
.

For the proof we refer the reader to [1, Theorem 6.6].
Therefore, from the boundedness on Lp(µ) of M(ρ) and Mp,ρ, the bound-

edness of T∗ on Lp(µ) follows. The endpoint estimate of T∗ will be asserted
in the following theorem.

Theorem 3.2. Let T be a Calderón-Zygmund operator. If T is bounded on
L2(µ) then the maximal operator T∗ is of weak type (1, 1).

Proof. To do this, we will claim that there exists C > 0 such that for any
λ > 0 and f ∈ L1(µ) ∩ L2(µ) we have

µ{x : |T∗(x)| > λ} ≤ C

λ
‖f‖L1(µ).

We can assume that λ > β0‖f‖L1(µ)/‖µ‖. Otherwise, there is nothing to
prove. We use the same notations as in Proposition 2.5 with Ri which

is chosen as the smallest (3 × 62, C
log2 3×62+1
λ )- doubling ball of the family

{3× 62Qi}i. Then we can write f = g + b, with

g = fχ
X\∪i6Qi

+
∑
i

ϕi
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and

b :=
∑
i

bi =
∑
i

(wif − ϕi).

Taking into account (7), one has

µ(∪i62Qi) ≤
C

λ

∑
i

ˆ
Qi

|f |dµ ≤ C

λ

ˆ
X
|f |dµ

where in the last inequality we use the pairwise disjoint property of the
family {Qi}i.
We need only to show that

µ{x ∈ X\ ∪i 62Qi : |T∗f(x)| > λ} ≤ C

λ

ˆ
X
|f |dµ.

We have

µ{x ∈ X\ ∪i 62Qi : |T∗f(x)| > λ} ≤ µ{x ∈ X\ ∪i 62Qi : |T∗g(x)| > λ/2}
+ µ{x ∈ X\ ∪i 62Qi : |T∗b(x)| > λ/2}
:= I1 + I2.

Note that |g| ≤ Cλ. Therefore, the first term I1 is dominated by

C

λ2

ˆ
|g|2dµ ≤ C

λ

ˆ
|g|dµ.

On the other hand,
ˆ
|g|dµ ≤

ˆ
X\∪i6Qi

|f |dµ+
∑
i

ˆ
Ri

|ϕi|dµ

≤
ˆ
X
|f |dµ+

∑
i

µ(Ri)‖ϕi‖L∞(µ)

≤
ˆ
X
|f |dµ+ C

∑
i

ˆ
X
|fwi|dµ ≤ C

ˆ
X
|f |dµ.

Therefore,

µ{x ∈ X\ ∪i 62Qi : |T∗g(x)| > λ/2} ≤ C

λ

ˆ
|f |dµ.

For I2, we have

I2 ≤ µ{x ∈ X\ ∪i 62Qi :
∑
i

χX\2Ri |T∗bi(x)| > λ/6}

+ µ{x ∈ X\ ∪i 62Qi :
∑
i

χ2Ri\62Qi |T∗ϕi(x)| > λ/6}

+ µ{x ∈ X\ ∪i 62Qi :
∑
i

χ2Ri\62Qi |T∗(wif)(x)| > λ/6}

:= K1 +K2 +K3.
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It is easy to estimate the terms K2 and K3. Indeed, we have

K2 ≤
C

λ

∑
i

ˆ
2Ri\62Qi

|T∗ϕi|dµ

≤ C

λ

∑
i

ˆ
2Ri

|T∗ϕi|dµ

≤ C

λ

∑
i

(ˆ
2Ri

|T∗ϕi|2dµ
)1/2

(µ(Ri))
1/2.

Using the L2 boundedness of T∗, we get that

K2 ≤
C

λ

∑
i

( ˆ
2Ri

|ϕi|2dµ
)1/2

(µ(Ri))
1/2

≤ C

λ

∑
i

‖ϕi‖L∞(µ)µ(Ri)

≤ C

λ

∑
i

ˆ
X
|wif |dµ =

C

λ

ˆ
X
|f |dµ.

and

K3 ≤
C

λ

∑
i

ˆ
2Ri\62Qi

sup
ε>0

∣∣∣ˆ
d(x,y)>ε

K(x, y)(wif)(y)dµ(y)
∣∣∣dµ(x)

≤ C

λ

∑
i

ˆ
2Ri\62Qi

ˆ
X
|K(x, y)||(wif)(y)|dµ(y)dµ(x)

≤ C

λ

∑
i

ˆ
2Ri\62Qi

ˆ
6Qi

1

λ(y, d(x, y))
|(wif)(y)|dµ(y)dµ(x)

≤ C

λ

∑
i

ˆ
2Ri\62Qi

ˆ
X

1

λ(xQi , d(x, xQi))
|(wif)(y)|dµ(y)dµ(x)

≤ C

λ

∑
i

ˆ
2Ri\62Qi

1

λ(xQi , d(x, xQi))
dµ(x)

ˆ
X
|(wif)(y)|dµ(y)

≤ C

λ

∑
i

ˆ
X
|(wif)(y)|dµ(y) (due to Lemma 2.6)

≤ C

λ

ˆ
X
|f |dµ.

We now take care of the term K1. For each i and x ∈ X\2Ri, we consider
three cases:

Case 1. ε < d(x,Ri): We have,

|Tεbi(x)| =
∣∣∣ˆ

Ri

K(x, y)bi(y)dµ(y)
∣∣∣.

Case 2. ε > d(x,Ri) + 2rRi: In this situation, it is easy to see that
|Tεbi(x)| = 0.
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Case 3. d(x,Ri) ≤ ε ≤ d(x,Ri) + 2rRi: It can be verified that for
y ∈ Ri we have d(x, y) ≥ d(x,Ri) ≥ 1

3(d(x,Ri) + 2rRi) ≥ ε
3 . Therefore, one

has, by (1)

|Tεbi(x)| ≤
∣∣∣ˆ

Ri

K(x, y)bi(y)dµ(y)
∣∣∣+
∣∣∣ˆ

d(x,y)≤ε
K(x, y)bi(y)dµ(y)

∣∣∣
≤
∣∣∣ˆ

Ri

K(x, y)bi(y)dµ(y)
∣∣∣+

ˆ
d(x,y)≤ε

C

λ(x, d(x, y))
|bi(y)|dµ(y).

Since λ(x, ·) is increasing and d(x, y) ≥ ε
3 , we can write

|Tεbi(x)| ≤
∣∣∣ ˆ

Ri

K(x, y)bi(y)dµ(y)
∣∣∣+

ˆ
B(x,ε)

C

λ(x, ε3)
|bi(y)|dµ(y)

≤
∣∣∣ ˆ

Ri

K(x, y)bi(y)dµ(y)
∣∣∣+

ˆ
B(x,ε)

C

λ(x, 6ε)
|bi(y)|dµ(y)

≤
∣∣∣ ˆ

Ri

K(x, y)bi(y)dµ(y)
∣∣∣+

C

µ(x, 6ε)

ˆ
B(x,ε)

|bi(y)|dµ(y)

Hence, in general, we have, for each i and x ∈ X\2Ri,

|Tεbi(x)| ≤
∣∣∣ ˆ

Ri

K(x, y)bi(y)dµ(y)
∣∣∣+

C

µ(x, 6ε)

ˆ
B(x,ε)

|bi(y)|dµ(y).

It follows that

∑
i

χX\2Ri |Tεbi(x)| ≤
∑
i

χX\2Ri

∣∣∣ ˆ
Ri

K(x, y)bi(y)dµ(y)
∣∣∣

+
∑
i

C

µ(x, 6ε)

ˆ
B(x,ε)

|bi(y)|dµ(y)

≤
∑
i

χX\2Ri

∣∣∣ ˆ
Ri

K(x, y)bi(y)dµ(y)
∣∣∣

+ CM(6)(
∑
i

|bi|)(x) ≤ A1 +A2

uniformly in ε > 0.
So, we can write

K1 = µ{x ∈ X\ ∪i 62Qi :
∑
i

χX\2Ri |T∗b(x)| > λ/6}

≤ µ{x ∈ X\ ∪i 62Qi : A1 > λ/12}+ µ{x ∈ X\ ∪i 62Qi : A2 > λ/12}
≤ K11 +K12.
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For the term K11, using
´
bidµ = 0 and (2), we have

K11 ≤
C

λ

∑
i

ˆ
X\2Ri

∣∣∣ˆ
Ri

K(x, y)bi(y)dµ(y)
∣∣∣dx

≤ C

λ

∑
i

ˆ
X\2Ri

∣∣∣ˆ
Ri

(K(x, y)−K(x, xRi))bi(y)dµ(y)
∣∣∣dµ(x)

≤ C

λ

∑
i

ˆ
X\2Ri

ˆ
Ri

|(K(x, y)−K(x, xRi))bi(y)|dµ(y)dµ(x)

≤ C

λ

∑
i

ˆ
X\2Ri

ˆ
Ri

d(y, xRi)
δ

d(x, y)δλ(x, d(x, y))
|bi(y)|dµ(y)dµ(x)

≤ C

λ

∑
i

ˆ
X\2Ri

ˆ
Ri

rδRi
d(x, xRi)

δλ(x, d(x, xRi))
|bi(y)|dµ(y)dµ(x)

≤ C

λ

∑
i

ˆ
X\2Ri

rδRi
d(x, xRi)

δλ(x, d(x, xRi))
dµ(x)

ˆ
Ri

|bi(y)|dµ(y).

By decomposing X\2Ri into the annuli associated to the ball Ri, we can
show that ˆ

X\2Ri

rδRi
d(x, xRi)

δλ(x, d(x, xRi))
dµ(x) ≤ C

for all i.
Therefore, we can dominate the term K11 by

K11 ≤
C

λ

∑
i

ˆ
Ri

|bi(y)|dµ(y)

≤ C

λ

∑
i

ˆ
Ri

|ϕi|dµ(y) +
C

λ

∑
i

ˆ
X
|wif |dµ(y)

≤ C

λ

∑
i

ˆ
X
|wif |dµ(y) ≤ C

λ

ˆ
X
|f |dµ.

We now proceed with K12. Since M(6)(·) is of type weak (1, 1), we have

K12 ≤
C

λ

∑
i

ˆ
X
|bi|dµ

≤ C

λ

∑
i

(ˆ
X
|ϕi|dµ+

ˆ
X
|wif |dµ

)
≤ C

λ

∑
i

ˆ
X
|wif |dµ ≤

C

λ

ˆ
X
|f |dµ.

This completes our proof. �

3.2. Boundedness of the maximal commutators. In this section we
restrict ourself to consider the spaces (X,µ) in which λ(x, ar) = amλ(x, r)
for all x ∈ X and a, r > 0 for some m. Recall that in such spaces (X,µ),
KB,Q ≈ K ′B,Q for all balls B ⊂ Q.
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For b ∈ RBMO(µ), we defined the maximal commutator T∗,b by

T∗,bf(x) = max
ε>0

∣∣∣Tε,bf(x)
∣∣∣ = max

ε>0

∣∣∣ ˆ
d(x,y)>ε

(b(x)− b(y))K(x, y)f(y)dµ(y)
∣∣∣.

As mentioned earlier, one problem in studying the boundedness of the max-
imal commutators is that the kernel of T∗ may not be a Calderón-Zygmund
kernel. This causes certain difficulties in estimating maximal commutators
T∗,b. To overcome this problem, we will exploit the ideas in [8].

Let φ and ψ be C∞ non-negative functions such that φ′(t) ≤ C
t , ψ

′(t) ≤ C
t

and χ[2,∞) ≤ φ ≤ χ[1,∞), χ[0,1/2) ≤ ψ ≤ χ[0,3). Associated to φ, ψ and T , we
introduced the maximal operators:

T φ∗ f(x) = sup
ε>0

∣∣∣T φε f(x)
∣∣∣ = sup

ε>0

∣∣∣ ˆ
X
K(x, y)φ

(d(x, y)

ε

)
f(y)dµ(y)

∣∣∣
and

Tψ∗ f(x) = sup
ε>0

∣∣∣Tψε f(x)
∣∣∣ = sup

ε>0

∣∣∣ ˆ
X
K(x, y)ψ

(d(x, y)

ε

)
f(y)dµ(y)

∣∣∣.
It is not difficult to show that

max{T φε f(x), Tψε f(x)} ≤ T∗f(x) + CM(5)f(x).

Hence T φ∗ and Tψ∗ are bounded on Lp(µ), 1 < p <∞.

Define the maximal commutators associated with T φε and Tψε by setting

T φ∗,bf(x) = max
ε>0

∣∣∣T φε,bf(x)
∣∣∣

= max
ε>0

∣∣∣ˆ
X

(b(x)− b(y))K(x, y)φ
(d(x, y)

ε

)
f(y)dµ(y)

∣∣∣
and

Tψ∗,bf(x) = max
ε>0

∣∣∣Tψε,bf(x)
∣∣∣

= max
ε>0

∣∣∣ˆ
X

(b(x)− b(y))K(x, y)ψ
(d(x, y)

ε

)
f(y)dµ(y)

∣∣∣
It is not hard to show that

(13) T∗,bf ≤ T φ∗,bf + Tψ∗,bf.

We are now in position to establish the boundedness of the maximal com-
mutator T∗,b.

Theorem 3.3. Let T be a Calderón-Zygmund operator. If T is bounded
on L2(µ) then the maximal commutator T∗,b is bounded on Lp(µ) for all
1 < p <∞. More precisely, there exists a constant C > 0 such that

‖T∗,bf‖Lp(µ) ≤ C‖b‖RBMO(µ)‖f‖Lp(µ)

for all f ∈ Lp(µ).
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Proof. We will show that there exists a constant C > 0 such that

‖T∗,bf‖Lp(µ) ≤ C‖b‖RBMO(µ)‖f‖Lp(µ)

for all f ∈ Lp(µ).
From (13), we need only to show that for p > 1, we have

(14) ‖T φ∗,bf‖Lp(µ) ≤ C‖b‖RBMO(µ)‖f‖Lp(µ)

and

(15) ‖Tψ∗,bf‖Lp(µ) ≤ C‖b‖RBMO(µ)‖f‖Lp(µ).

The proofs of (14) and (15) are completely analogous. So, we only deal
with (14).

For each ball B ⊂ X, we denote

hB := −mB(T φ∗ ((b− bB)fχX\ 6
5
B).

As in the proof of [9, Thorem 9.1] (see also [1, Theorem 5.9]), it suffices to
claim that for all balls x ∈ Q ⊂ R

(16)
1

µ(6Q)

ˆ
Q
|T φ∗,bf − hQ|dµ ≤ C‖b‖RBMO(Mp,5f(x) +Mp,6T

φ
∗ f(x))

for all x and B with x ∈ B, and

(17) |hQ − hR| ≤ C‖b‖RBMO(Mp,5f(x) + T φ∗ f(x))K2
Q,R.

To estimate (16), we write

|T φ∗,bf − hQ| = |(b− bQ)T φ∗ f − T φ∗ ((b− bQ)f)− hQ|

≤ |(b− bQ)T φ∗ f |+ |T φ∗ ((b− bQ)f1)|+ |T φ∗ ((b− bQ)f2) + hQ|

where f1 = fχ 6
5
Q and f2 = f − f1. For the first term, by Hölder inequality,

we have

1

µ(6Q)

ˆ
Q
|(b− bQ)T φ∗ f |dµ ≤

( 1

µ(6Q)

ˆ
Q
|(b− bQ)|p′dµ

)1/p′
×
( 1

µ(6Q)

ˆ
Q
|T φ∗ f |pdµ

)1/p
≤ C‖b‖RBMO(µ)M(6)T

φ
∗ f(x).

For the second term, by Hölder inequality and the uniform boundedness of

T φ∗ on Lp(µ), we have

1

µ(6Q)

ˆ
Q
|T φ∗ ((b− bQ)f1)|dµ ≤ C‖b‖RBMO(µ)Mp,5f(x).
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Let us take care of the third term. For x, y ∈ Q and ε > 0, we write

|T φε ((b− bQ)f2)(x)− T φε ((b− bQ)f2)(y)|

=
∣∣∣ˆ

X\ 6
5
Q

(K(x, z)φ
(d(x, z)

ε

)
−K(y, z)φ

(d(y, z)

ε

)
)(b(z)− bQ)f(z)dµ(z)

∣∣∣
≤
∣∣∣ˆ

X\ 6
5
Q

(K(x, z)−K(y, z))φ
(d(x, z)

ε

)
(b(z)− bQ)f(z)dµ(z)

∣∣∣
+
∣∣∣ ˆ

X\ 6
5
Q
K(y, z)

(
φ
(d(y, z)

ε

)
− φ

(d(x, z)

ε

))
(b(z)− bQ)f(z)dµ(z)

∣∣∣
≤ A1 +A2.

For the term A1, by (2), we have
(18)

A1 ≤
ˆ
X\ 6

5
Q
|K(x, z)−K(y, z)||(b(z)− bQ)f(z)|dµ(z)

≤ C
ˆ
X\ 6

5
Q

d(x, y)δ

d(x, z)δλ(x, d(x, y))
|(b(z)− bQ)f(z)|dµ(z)

≤ C
∞∑
k=0

ˆ
6k+1Q\6kQ

d(x, y)δ

d(x, z)δλ(x, d(x, y))
|(b(z)− bQ)f(z)|dµ(z)

≤ C
∞∑
k=0

6−kδ
ˆ
6k+1Q

1

λ(xQ, 6krQ)
|(b(z)− bQ)f(z)|dµ(z)

≤ C
∞∑
k=0

6−kδ
ˆ
6k+1Q

1

λ(xQ, 6krQ)
|(b(z)− bQ)f(z)|dµ(z)

≤ C
∞∑
k=0

6−kδ
1

µ(5× 6kQ)

ˆ
6k+1Q

|(b(z)− b6k+1Q)f(z)|dµ(z)

+ C
∞∑
k=0

6−kδ
1

µ(5× 6kQ)

ˆ
6k+1Q

|(b6k+1Q − bQ)f(z)|dµ(z)

≤ C
∞∑
k=0

6−kδ‖b‖RBMO(µ)M(5)f(x) + C
∞∑
k=0

(k + 1)6−kδ‖b‖RBMO(µ)Mf(x)

= C‖b‖RBMO(µ)M(5)f(x).

Since φ′(t) ≤ C
t , for z ∈ 6k+1 6

5Q\6
k 6
5Q and x, y ∈ Q,

φ
(d(y, z)

ε

)
− φ

(d(x, z)

ε

)
≤ C d(x, y)

d(z, xQ)
≤ C6−(k+1).
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From this estimate, we obtain that

A2 ≤
∞∑
k=0

ˆ
6k+1 6

5
Q\6k 6

5
Q

∣∣∣K(y, z)
(
φ
(d(y, z)

ε

)
− φ

(d(x, z)

ε

))∣∣∣
× |(b(z)− bQ)f(z)|dµ(z)

≤ C
∞∑
k=0

6−k
ˆ
6k+1 6

5
Q\6k 6

5
Q

1

λ(y, d(y, z))
(b(z)− bQ)f(z)|dµ(z)

≤ C
∞∑
k=0

6−k
ˆ
6k+1 6

5
Q\6k 6

5
Q

1

λ(xQ, 6krQ)
(b(z)− bQ)f(z)|dµ(z).

At this stage, repeating the argument as in (18), we also obtain that A2 ≤
C‖b‖RBMO(µ)M(5)f(x). This together with (18) gives for all x, y ∈ Q

|T φε ((b− bQ)f2)(x)− T φε ((b− bQ)f2)(y)| ≤ C‖b‖RBMO(µ)Mp,5f(x)

uniformly in ε. Taking the mean value inequality above over the ball Q with
respect to y, we have

1

µ(6Q)

ˆ
Q
|T φ∗ ((b− bQ)f2) + hQ|dµ ≤ C‖b‖RBMO(µ)M(5)f(x).

for all ε > 0. Therefore, the proof of (16) is complete.

It remains to check (17). For two balls Q ⊂ R, let N be an integer number
such that (N − 1) is the smallest number satisfying rR ≤ 6N−1rQ. Then, we
break the term |hQ − hR| into five terms:

|mQ(T φ∗ ((b− bQ)fχX\ 6
5
Q)−mR(T φ∗ ((b− bR)fχX\ 6

5
R)|

≤ |mQ(T φ∗ ((b− bQ)fχ6Q\ 6
5
Q)|+ |mQ(T φ∗ ((bQ − bR)fχX\6Q)|

+ |mQ(T φ∗ ((b− bR)fχ6NQ\6Q)|

+ |mQ(T φ∗ ((b− bR)fχX\6NQ)−mR(T φ∗ ((b− bR)fχX\6NQ)|

+ |mR(T φ∗ ((b− bR)fχ6NQ\ 6
5
R)

= M1 +M2 +M3 +M4 +M5.

Let us estimate M1 first. For y ∈ Q we have, by Proposition 3.2

|T φ∗ ((b− bQ)fχ6Q\ 6
5
Q)(x)|

≤ C

λ(x, rQ)

ˆ
6Q
|b− bQ||f |dµ

≤ µ(30Q)

λ(x, 30rQ)

( 1

µ(5× 6Q)

ˆ
6Q
|b− bQ|p

′
dµ
)1/p′

×
( 1

µ(5× 6Q)

ˆ
6Q
|f |pdµ

)1/p
≤ C‖b‖RBMOMp,5f(x).

Likewise, M5 ≤ ‖b‖RBMOMp,5f(x). Hence, we have

M1 +M5 ≤ C‖b‖RBMOMp,5f(x).
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For the term M2, it is verified that for x, y ∈ Q
|T φ∗ fχX\6Q(y)| ≤ T φ∗ f(x) + CMp,5f(x).

This implies

|mQ(T φ∗ ((bQ − bR)fχX\6Q)| ≤ CKQ,R(T φ∗ f(x) +Mp,5f(x)).

As in estimates A1 and A2, one gets that

M4 ≤ C‖b‖RBMOMp,5f(x).

For the last term M3, we have, for y ∈ Q,

(19) |T φε ((b−bR)fχ6NQ\6Q(y)| ≤ C
N−1∑
k=1

1

λ(y, 6krQ)

ˆ
6k+1Q\6kQ

|b−bR||f |dµ.

Since |b− bR| ≤ |b− b6k+1Q|+ |bR − b6k+1Q|, further going we have

|T φε ((b− bR)fχ6NQ\6Q(y)|

≤ C
N−1∑
k=1

1

λ(y, 6krQ)

[ ˆ

6k+1Q\6kQ

|b− b6k+1Q||f |dµ

+

ˆ

6k+1Q\6kQ

|bR − b6k+1Q||f |dµ
]

≤ C
N−1∑
k=1

µ(5× 6k+1Q)

λ(xQ, 6krQ)

[ 1

µ(6k+2Q)

ˆ

6k+1Q\6kQ

|b− b6k+1Q||f |dµ

+
1

µ(5× 6k+1Q)

ˆ

6k+1Q\6kQ

|bR − b6k+1Q||f |dµ
]

(20)

By Hölder inequality and the similar argument in estimate the term M4 we
have

1

µ(5× 6k+2Q)

ˆ

6k+1Q\6kQ

|b− b6k+1Q||f |dµ ≤ ‖b‖RBMOMp,5f(x)

and
1

µ(5× 6k+1Q)

ˆ

6k+1Q\6kQ

|bR − b6k+1Q||f |dµ ≤ CKQ,R‖b‖RBMOMp,5f(x).

These two above estimates together with (19) give

|T φε ((b− bR)fχ6NQ\6Q(y)| ≤ CK2
Q,R‖b‖RBMOMp,5f(x)

uniformly in ε > 0.
It follows that M3 ≤ CK2

Q,R‖b‖RBMOMp,5f(x). From the estimates of

M1,M2,M3,M4 and M5, (17) follows. This completes our proof. �
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