
so 

CONTRACTIVE PROJECTIONS ON BANACH SPACES 

Ian Doust 

ABSTRACT. Increasing sequences of contractive projections on a reflex
ive LP space share an unconditionality property similar to that exhibited 

sequences of self-adjoint projections on a Hilbert space. A slight vari
ation of this property is shown to be precisely the correct condition on a 
reflexive Banach space to ensure that every operator with a contractive 
AC-functional calculus is scalar-type spectraL 

1. Introduction 

Our aim in what follows is to discuss a few questions about the behaviour of the 
contractive projections on Banach spaces which arise from some problems in abstract 
spectral theory. Let us fix some notation. Throughout, 1i will denote a separable complex 
Hilbert space, X will denote a real or complex Banach space and Proh(X) will denote 
the set of all contractive projections on X, i.e. 

ProJI(X) = {P EB(X): P 2 = P and IJPJJ:::; 1}. 

We shall say that a sequence {Pj} of contractive projections is increasing if, for all i,j, 

If the index set is N, we shall employ the convention that P0 = 0. 

Our starting point is a simple property of the contractive projections on 1i. These of 
course are just the usual orthogonal projectionso 

THEOREM 1. If 0 =Po, P1, ... is an increasing sequence of contractive projections on 
1i and { aj }~1 is a sequence of scalars such that Jaj J :::; 1 for all j, then 

co 

L aj(Pj - Pj-r) :::; 1. 
j=l 

The series here converges in the strong operator topology. 

1980 Mathematics Subject Classification (1985 Revision). 46B20, 47B40. 



51 

An analogue of this holds for the contractive projections on reflexive LP spaces. This 
result is much more difficult, depending on a characterisation of the contractive pro
jections on these spaces in terms of conditional expectation operators, and on the fact 
that martingale transforms are bounded on LP[O, 1], 1 < p < oo. For 1 < p < oo, let 
p* = max{p,pf(p- 1)}. 

THEOREM 2 [DO,PR,D2]. Suppose that 1 < p < oo and that (Sl,A, f-l) is an arbitrary 
measure space. Suppose also that 0 = P0 , P1 , ... is an increasing sequence of contractive 
projections on LP(Sl,A,f-!;C) and that {aj}~1 is a seq·uence of scalars such thai lail ::=; 1 
for all j. Then for all n :2: 1 

n 

L aj(Pj- Pj-1) ::=; 2(p* -1). 
j=l 

Theorem 2 was originally proved for real LP spaces. Burkholder [B] has shown that 
the constant p* - 1 will suffice in this case and is the smallest constant for which the 
theorem holds for all measure spaces. The problem of best constants will be discussed in 
more detail in section 3. 

Well-bounded operators on Banach spaces are those which have a norm continuous 
functional calculus for AC[a, b], the absolutely continuous functions on some compact 
interval of the real line. Since the polynomials are dense in this Banach algebra, an operator 
T E B(X) is well-bounded if there exists a compact interval [a, b] C fR and a constant J{ 

such that for all polynomials g, 

llg(T)II ::=;I< llgiiAc = K { lg(b)l + 1b lg'(t)!dt}. 

There has been some interest in being able to decide when a well-bounded operator is 
scalar-type spectral. Scalar-type spectral operators have better behaved spectral expan
sions and larger functional calculi. Whereas a scalar-type spectral operator has, like a 
self-adjoint operator, a representation with respect to a countably additive spectral mea
sure, the spectral theorem for well-bounded operators gives only a representation in terms 
on an increasing family of projections on X*. On reflexive spaces the situation for well
bounded operators is rather more satisfactory in that a well-bounded operator Ton such a 
space admits a Riemann-Stieltjes type integral representation against a uniformly bounded, 
strong-operator right-continuous, increasing family {E( .\)} >< E IR of projections on X known 

as a spectral family. In this case we shall write T = J[~,b] J...dE(.\). Precise definitions and 
the statements of the spectral theorems for scalar-type spectral and well-bounded operators 
may be found in [Dow]. 

In [FL] Fong and Lam showed that a sufficient condition for a well-bounded operator 
on a Hilbert space to be self-adjoint is that its AC[a, b]-functional calculus be contractive. 
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THEOREM 3 [FL, Proposition 2.13,Dl]. Suppose that TeB(H) and that there exist 
a S c S be IR such that for all polynomials g, 

JJg(T)JI s { Jg(c)J + ib Jg'(t)Jdt}. 

Then T is self-adjoint. 

Fong and Lam used spectral carriers and convexity arguments to prove their result. In 
[D2], Theorem 3 was extended to cover the other reflexive LP spaces by utilising Theorem 2. 

THEOREM 4 [D2]. Suppose that 1 < p < oo, that T eB(LP) and that there exist 
a S c S b d'il such that for all polynomials g, 

JJg(T)JI s { Jg(c)J + 1b Jg'(t)Jdt}. 

Then T is scalar-type spectral. 

Theorem 3 and 4 should be compared to the classical results that: 
i) T E B(H) is self-adjoint if and only if T has an isometric C( a(T))-functional calculus; 
ii) TEB(X) is scalar-type spectral if and only if it has a weakly compact C((}(T))-

functional calculus, i.e. for all x EX, the map f f--4 f(T)x is a weakly compact operator 
from C((}(T)) into X. 

My interest here is in discovering which are the spaces for which an analogue of 
Theorem 4 holds. It turns out that the condition exhibited by the reflexive LP spaces in 
Theorem 2 is almost the "right" one. 

2. Unconditionality properties for contractive projections 

Definition.. 1) A Banach space X is said to have the uniform unconditionality property for 
contractive projections (uniform UPCP ), if there exists K > 0 such that for all increasing 
sequences of contractive projections {Pj}~1 , all sequences of scalars {aj}~1 with JailS 1 
and all n 2": 1, 

n 

L aj(Pj- Pj-d S I<. 
j=l 

We shall let K(X) denote the smallest such K. 
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2) A Banach sp<:Lce X is said to have the bilateral unconditionality property for contractive 
UPCP ), if given an increasing sequence of contractive projections 

{Pj }~_00 , there exists K > 0 such that for all sequences of scalars { aj }~-oo with JaJi ::; 1 
and all n ~ m, 

n 

j=m 

3) A Banach space X is said to have the <mcondiiionality for contractive projec
tions (UPCP ), if given an increasing sequence of contractive projections } ~1 , there 
exists K > 0 such that for all sequences of scalars {aj}~1 with JajJ::; 1 and all n ~ 1, 

The following theorem follows directly from the definitions. For those terms not 
defined above we suggest that the reader consult [Sil] and [Si2]. 

THEOREM 5. Snppose that X is a Banach space. 'Then 

.u-
x has bilateral UPCP 

.u-
x has UPCP 

.u-
All monotone Schauder 

.v-
All monotone Scha·uder bases of X a-re unconditional. 

We shall say tho,t an operator T f. B( X) has a contractive AC -functional calculus if 
there exist real numbers a ::; c ::; b such that for all polynomials g, JJg(T)JI ::; Jg(c)J + 

Jg'(t)Jdt. The following theorem relates the above unconditionality properties for con
tractive projection to the property that an analogue of Theorem 4 holds for operators on 
the space. 

THEOREM 6 [Dl, Theorem 6.3.5]. Suppose thai X is reflexive. 'Then X has bilateral 
UP CP if and only if every operator on X with a contractive A.C -functional calculus is 
scalar-type spectral. 

The proof requires two lemmas. 

LEMMA 7. Suppose that X is reflexive and that {Pj}~-oo is a uniformly bounded 
mcreasmg sequence of projections on X. Suppose also that 0 < Aj < Aj+l < 1 for j c.1.. 



Define {E(.A)},.d~ by 

Then { E( ,\)} is a spectral family and 
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.A < 0; 

.\ = 0; 
A E [Aj, Aj+l); 
.A;::: L 

sup IIE(J\)11 =sup IIPjll 0 

>. dll jElL 

Proof. The only to check is that {E(.\)} is well defined at .\ = 0 and that it has a 
strong left-hand limit at .\ = 1. This follows from a result of Lorch (see [Dow, Theorem 
5.4]). llli 

LEMMA 8. Suppose that f: [0, 1] ---+I[ is not of bounded variation. Then there exists a 
sequence real numbers { Aj }~-= such that 

i) 0 ~ ~ Aj+l ~ 1, for all j e7L; 

ii) L~-oo lf(Aj)- f(.\j-1)1 = 00. 

The proof of Lemma 8 is left as an exercise. Note however, that the proof requires a 
little more care than it might appear at first sight. 

Proof of theorem. ( =? )0 Suppose that T e B(X) admits a contractive AC-functional 

llg(T)II ~ {lg(c)i + lg'(t) 

for all polynomials g. As noted T is well-bounded and so admits a representation 
against a spectral family {E(.\)}, say. If Tis not scalar-type spectral, then it follows from 
a result of Berkson and Dowson (see [Dow, Theorem 16016]) that there exist x eX and 
x* EX* such that the map i.p : A ~---t< E(>.)x, x* > is not of bounded variation on [a, b]o 
Clearly then, either l.f!i[a,c] or l.f!i[c,b] is not of bounded variation. 

Suppose that l.f'i[a,c] is not of bounded variation. Then by Lemma 8, there exists an 
increasing sequence Pi }~-oo t [a, c] such that 

00 

L !l.f!(Aj)- l.f!(Aj-dl = 00. 

j=-co 

Suppose that Aj = c for some j. In this case let j 0 denote the smallest such j that 
Aj = c for all j ;::: j 0 ). Otherwise let j 0 = oo. If we set 

if j < jo; 
if j ;::: jo, 
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then it is clear that f-lj E c) for all j. A simple calculation shows that 

00 

L lso(/1j)- so(tLj-1)1 = oo. 
j=-oo 

For j t.l, let Pj = E(tLj)· Then, since {E(.\)} is a spectral family, {Pj} must be an 
increasing sequence of projections. By [D2:, Lemma 2.5] we know that IIE(.\)11 ::; 1 for all 
A c [a, c), so all the elements of {Pj} must be contractive projections. Now for each j E Z, 

iso(tlj)- so(t-tj-1)1 =I< Pjcc,x* >- < Pj-lx,x* >I 
= < O'.j(Pj- Pj-l)x, x* > 

for some unimodular scalar O'.j· Thus 

t ai(Pj- Pi-dl-+ oo 
J=m I 

as m -> -oo and n-+ oo, and so X does not have bilateral UPCP. 
Suppose now that sol[c,b] is not of bounded variation. Again by Lemma 8 choose an 

increasing sequence {.\j }~-oo E [c, b] such that 

co 

L l1o(.Aj)- SOC-\-i-dl = oo. 
j=-oo 

Now for j E 7L, define Pj =I
of contractive projections. Also 

Again we have that { Pj} is an increasing sequence 

lso(>.j)- <p()'j-dl =I< (I- P_j)x,,r* >- < - PI-j)x,x* >I 
=I< (P-j- Pl-j)x,x'' >I 
= < a~;;(Pk - Pk-1 x* > 

where k = and O'.k is some unimodular scalar. The proof is then completed as above. 

(.;=).Suppose that {Pj}~-oo is an increasing sequence of contractive projections on 
X. Construct a spectral family { E( .\)}A • ~' concentrated on [0, 1] by Lemma 7 and let 

T = Jr:,b] )..dE(») be the corresponding well-bounded operator. As is well-known, 

l[g(T)Il::; {lg(b)l + lg'(t)ldt) sup IIE(.\)11· 
( AE ~ 

? 

Thus T has a contractive AC-functional calculus and so by hypothesis is scalar-type spec
tral. 
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Suppose that A=(.\, tL] C IR and denote by XA the characteristic function of A. If we 
denote the resolution of the identity for T by £, then the spectral theorems for well-bounded 
and scalar-type spectral operators allow us to calculate XA(T) as either Jr:. 1] XA(.\)dE(.A) 
or fu(T) XA ( w )£( dw) (and it is easy to show that these two definitions agree). This implies 
that 

XA(T) = £((.A,tL]) = E(tL)- E(.A). 

Suppose that Jai J :::; 1 for j = m, ... , n. Then since scalar-type spectral operators possess 
a functional calculus for the bounded Borel measurable functions under the supremum 
norm (see [Dow, p. 120]), 

n n 

L aj(Pj- Pj-1) L ai£((>-j-1, .A;]) 
i=m j=1 

n 

:::; 4sup II£(A)JJ sup L ajX(>.;-t,>.;J(w) 
A w < [0,1] j=m 

:::; K, say. 

Note that K does depends only on the sequence of projections {Pj} and not on { aj }, m 
or n, so X must have bilateral UPCP. • 

3. Some questions 

The most immediate question is: 

Question 9. Which spaces have (bilateral) UPCP? 

The only spaces we know to have UPCP are the reflexive LP spaces and spaces of 
finite dimension. Note that these spaces all have uniform UPCP. It is not difficult to show 
that many classical non-reflexive spaces do not have UPCP. For example, 

i) L1 [0, 1], C[O, 1] and c0 all have conditional monotone bases (see [Si, pp. 215, 396 
and 634-635]); 

ii) £1 = c~, L=[o, 1] = L1 [0, 1]*, etc.; 
iii) The space of trace class operators, C1 has a conditional monotone Schauder de

composition (but no monotone Schauder basis) (see [D1,Theorem 6.2.4],[AF, §7]). 
Note that the UPCP conditions are isometric rather than isomorphic properties. The 
following theorem allows one to construct examples of reflexive spaces without UPCP. 

THEOREM 10 [D1, Theorem 6.4.1]. Suppose that X contains an infinite dimensional 
complemented subspace with a basis. Then X can be equivalently renormed so that it does 
not have UPCP. 

Question 11. If X has UPCP, must X be reflexive? 

Question 12. Are the three UPCP conditions distinct? 
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Question 13. If X has must X* have UPCP? 

Several classes of spaces have been suggested as good candidates for having UPCP. 
These include 

i) the Lebesgue-Bochner spaces, LP([O, 1]; IR\2 ), for 1 < p < oo; 
ii) the von Neumann-Schatten p-classes, Cp for 1 < p < oo; 
iii) spaces with few contractive projections. 

Bosznay and Garay [BG] have shown that under many norms (in a sense which we shall 
not make precise), IR\n (and admit no contractive projections of rank greater than 1 
other than the identity. It seems to be an open question as to whether infinite dimensional 
Banach spaces a:n be renormed in this way. 

In a slightly different direction, one can try and calculate for a particular 
Banach space with uniform UPCP. As was mentioned above, Burkholder has shown that, 
for 1 < p < oo, K(LP([O, 1]; IRI)) = 1. This sharp constant was used in [D2] to show that 
K(LP([O, 1]; C)) ~ 2(p"- 1), but it is not difficult (using the Riesz-Thorin interpolation 
theorem and the fact that 1]; C)) = 1) to show that this cannot be the sharp 
constant for the complex case. Calculating K(LP([O, 1]; IC)) is equivalent to finding the 
basis constant for the Haar basis on 1]; C). Pelczy1~ski [P] has conjectured that this 
is alsop* - 1, but this question is still open. 

Even for a two point measure space it seems hard to do very much. It is easy to see 
that 

KW(2; R)) = C))= 3, 

R)) = KW(2; C))= 1. 

Using the characterisation of contractive projections on LP spaces in terms of conditional 
expectation operators due to Ando [A], one can use interpolation to find bounds for 
K(£P(2; IFR)) and IC)). Unfortunately these interpolated bounds are also not sharp 
for 1 < p < 2. One can show however that 

where the supremum is taken over 0 < f.l < 1, a, ,8, c: E IFR and lc:l :::; 1. The evaluation ofthis 
supremum is left as an exercise for the reader (the author can't do it!). Even showing that 
the value of the supremum is not increased by allowing a, ,8 and c: to be complex would be 
interesting. 
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