
24 

Lagranghul coru:liti ons for a m1 ni max 

B. D. Craven 

Abstract 
A ral approach is given to Lagrangian necessary conditions for a 

minimax problem, The necessary conditions become sufficient for a 
mini max under extra otheses, with either concave/ conve>< or i nvex 
functions, and restrictions on the constraints. A minimax is shown to 
relate to a weal< minimum of a vector function. The sensitivity of a 
minimax value to a perturbation is related to the gradient of a Lagrangian 
function with respect to the parameter. 
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1. Introduction 
Minimax problems are often associated with constrained 

minimization problems. Examples of functions F(x,y) which are to be 
maximized with respect toy, then minimized with respect to x, include: 

(i) = f(y)- g(y)' (1) 

a Lagrangian function from the problem 
Maximize f(y) subject to g(y)::=O (2) 

lor to -g(y)e where 5 is a closed convex cone]; 
(i i) F(x,y) "' f(y) - /2) li[g(y)+ J.l- 1 xl ... 11 2 , 

an augmented Lagrangian for J.l is a positive parameter, and 
!tl+ = t if t<::O, [t]+=O if t<O, for each component of g(y)+J.l-1 x. 

[For a constraint -g(x)eS, the expression [g(y)+.u-1 x]+ is replaced by 

(I~P)[g(y)+J,C 1 x], where Pv=v for ve:s, and, for v~s, Pv is the 
orthogonal projection of v onto 5]. 
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For (i) and (ii), the miniiTHn< problem is: 
!MINx {MAXy F(x,y) : g(y)s; 0} : x~O ] , 

with x~O replaced by xeS*, the dual cone of S, in case of a constraint 
-g(y)eS, Another example of minimax occurs when an objective function 
is the pointwise maximum of several functions, namely 

{MAXi fj(X)}: g(x) s; 0 ], 

where i= 1 ,2,, .• r. 
A obal) minimax (x* ,y*) for the problem: 

MINxeA MAXye:::(x) (3) 

where A and B(x) are given sets, means that there exists a function y"(x) 

such that y*=y"(x*) and 
(\ixeA, \iyeB(x)) F(x,y"'(x))~F(x*,y*) and F(x,y"'(x))~F(x,y), (4) 

In contrast, (x*,y*) is a sadd'lepoint for if, instead, 
x =A, \iy eS(x)) *)~F(xll!· ,y*)2:F(x* ,y). (5) 

It is well known -see, for example, Tanimoto [ 11], Craven and !"land 
[7], Bee tor and Chandra [ 1] - that a mini max problem is often associ a ted 
with necessary conditions of Kuhn-Tucker type. It will now be shown 
that this holds under fairly general conditions, and also that such 
necessary conditions become also sufficient for a mini max, under 
suitable convexity hypotheses. 

2. Necessary corJditi ons for :Bl minima~{ 

Consider the problenl: 
[t"liNx {MAXy F(x,y): -h(x,y)eS}: eT], (6) 

in which X,Y,Z,U are normed spaces, F:XxY-'>R, h:Xxv~u, g:X-">Z are 
continuously (Frechet) differentiable functions, scu and rcz are closed 
convex cones, MIN denotes local minimum, and 11AX denotes local 
maximum. (The spaces rn but need not, be finite-dimensional.) Assume 
that the inner (maximization) problem reaches a (local) maximum when 
y=y"(x), with maximum value denoterl by m(x), and that a constraint 
quali'fication holds at this maximum. Then = F(x,y"(x)); and 
Kuhn-Tucker necessary conditions hold: 

(3A.(x)E5*) Fy(x,y"'(x))-/,(x)Thy(x,y"(x))=O, J>.(x)Th(x,y"'(x))=O. (7) 

(Here Fy means partial Frechet derivative with respect toy, and 

superscript T denotes transpose in finite dimensions; in infinite 
dimensions, J>. is a continuous linear functional, and A. Thy means the 

composition A.ohu.) 
;:1 
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Si nee x is a parameter in the inner 
regularity conditions, that tile gradient 

em, it follows, under some 
of m(x) equals the 

derivative, with respect to x, 01' the Lagrangian thus 
::: F 

Appropriate regularl conditions are [4] that is a Upschitz 
function, is continuous, and a constraint i'fi cation ho 1 ds fol- the 
inner em for each x, so that Kuhn-Tw::ker conditions hold, 
Hypotheses sufficient for the first two requirements are discussed in 

Consider now the outer nimizati problern. Assuming a 
constraint qualification (now relating to the constraint eT), 

Kuhn-Tucker conditions for a minimum at x:::x* are: 
m + = JJ. T ~oo 

Substituting from ) for mx gives 

( 1 

Define therefore a ngian function for ti1e minimax problem as 
= F(x 

Denote VL:=!Lx,Lyl· 

~,tT g(x). ( 11) 

theorem has now been proved. 

Theorem 1 In the minimax em assume that 
(i) F,g and hare continuously Fn3chet diHerentiable; the minimax is 

reached at (x,y)=(x*,y*), with a constraint qualification holding there for 
the outer problem; 

(ii) for eT and llx-x*ll sufficiently small, the inner problem 
reaches a local maximum at a nt Kuhn-Tucker conditions hold 
there witll Lagrange multiplier is continuous at x*, andy"(.) 
is a Lipschitz function, with y"(x*):::y*. 
Then 

(3J, * eS*, U * T g(x*)=O; A* T h(x* ,y*)=O, ( 1 

where A "(x*)=A *. Moreover, for -g(x) =T and II x-x* II suffi ci entl y small, 
Ly(x,y"(x);A "(x),u*)=O; ( 13) 
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3. Sufficient condH:ions for a minim~x 
A converse result to Theorem 1 holds, under the serious restriction 

that h(x,y) does not depend on x, In this case, problem (6) takes the form: 
MINx e.6, MAXy e;:; F(x,y) , ( 14) 

in which .!l:={xeX:-g(x)eT}, and B:={yeY:-Il(x,y)eS is independent of x. 

In order to apply an implicit function theorem, consider the system: 
Ly(x,y;11.,J.l*)=O; ii.Th(x,y)=O, -h(x,y)=S, ).e5*, ( 1 

written in the form -i<(y,il.;x)eV, where Jl·~ is fi xis a parameter,. Vis 
the convex cone {O}x{O}x5xS*, and solUtions (y,il.)=~(x) are sought, when 
llx-x*ll is smalL For this system, consider the Robinson condition 

0 e i nt[K(y* ,:A *;x*) + ran P (y,:A)K(y* ,:A *;x*) + ( 16) 

where lnt denotes ·interior, ran denotes range, and P(y,:A) denotes partial 

Frechet derivative with respect to From ( 15) and ( 16), the 
condition requires that 

O=int!Ly+Lyy(Xl<V)l; ( 1 

0 =i nt[:A T h+J1. T hy(XxV)+h T (U*)i; ( 1 B) 

O=int[h+hy(XxV)+Sh ( 1 9) 

Oeint!-11.-U*+S*]; (20) 
where all functions are evaluated at (l<,y,:A)=(x*,y*,ll.·)l.). Note that ( 1 is 
equi v a 1 ent to the surj ecti vity of Lyy ; and(20) holds trl vi a 11 y. 

Theorem 2 For problem (6), assume that 
(i) F,g and hare continuously Fnkhet differentiable, and h(x,y) does 

not depend on x, 
(ii) the Kuhn-Tucker necessary conditions ( 1 hold, with -11(x*,y*)eS, 

-g(x*) =T; 
(iii) is concave for each xe.t,., FC,y) is convex for each yeY, and 

that gU is T-convex; 
(iv) Ly is continuously Frect-~et differentiable with respect toy, 

Lyy(x*,y*) is surjective, the other Robinson conditions ( 18), ( 1 9) hold at 

(x*,y*,A.*), and Ly is continuously differentiable with respect to x, 
Then *,y*) is a local minimax point for (6). 

Proof Robinson's theorem [9, Theorem 1] shows from (iv) that ( 13) has 
a continuous solution (y,:A)=(y"(x),il. "(x)), with (~,((x*),il. "(x*))=(y*,:A *), 
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valid when llx-x*ll is sufficiently small. Implicit differentiation of ( 15) 
shows that y"'(.) is differentiable at x*, hence Lipschitz. Hence there hold 
( 15), the necessary Kuhn-Tucker conditions for a maximum of the inner 
problem in (14). Since F(x,.) is concave, these necessary conditions are 
also sufficient for a maximum at y=y"'(x); thus 

m(x) := F(x,y"'(x))=MAXyes F(x,y). (21) 

Since m(.) is a maximum of a set of convex functions, m(.) is convex. 
Since>.."'(.) is continuous andy"'(.) is Lipschitz, the gradient mx(x) is given 

by (8). If -g(x)eT, then convexity of F(.,y*) and T-convexity of g(.) show 
that, if xe.6., then 

F(x,y"'(x))-F(x* ,y*) =m(x)-m(x*) 
i!::mx<x*)(x-x*) 

=F x<x* ,y*))(x-x*) 

=-Jl * T gx(x* ,y*)(x-x*) 

i!:: -Jl*T g(x) + Jl*T g(x*) 
i!:: 0 + 0. 

since y*=y"'(x*) 
since m(.) is convex 

by (8), si nee hx=O 

by ( 12) 

since Jl*T g(.) is convex 

Remark The proof does not need MAXy F(.,y) differentiable; it may not be. 

Remark If the hypothesis (iv) is omitted, then (21) only holds for x=x*, 
and only a saddlepoint can be deduced, by 

F(x,y*)-F(x* ,y*)i!::F x<x* ,y*)(x-x*) 

=-Jl * T gx(x*)(x-x*) 

i!::-Jl*T g(x)+Jl*T g(x) 
i!::O+O. 

Remark If h(x,y) depends on x, <P:.6.xY-+R-:=RU{+oo} may be defined (in 
the manner of Rockafellar [ 1 OJ) as <P(x,y)=F(x,y) when -h(x,y)eS, 
otherwise <P(x,y)=+oo. Then (6) is equivalent to the problem 

MINxe.6_ {MAXyeY <P(x,y)} . (22) 

Then Theorem 2 may be applied with <P replacing F andY replacing S. But 
the necessary conditions so obtained are not useful, because the 
concave/convex properties assumed for <P only hold when <P takes only 
finite values for xe.6., thus when h does not depend on x. 

A less restrictive sufficiency theorem can be given, when the 
dependence of h(x,y) on x takes a certain form. Consider the form: 

h(x,y)=q(r(x)+y) , (23) 
where q and rare differentiable functions. 
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Theorem 3 For the minimax problem (6), assume that F,g,h are 
continuously Frechet differentiable, and satisfy hypotheses (ii) and (i 
of Theorern 2, where 11(x,y) has the speclal form (23) with q and r 
differentiable. Define 'f(x,w):=F{x,w-r(x)) and Q:={w:-q(w) Assume 
also that 'f(x,.) is concave on Q for each xell.., 'f(.,w) is convex for each 
weQ, and that 
(6). 

is T -convex, Then is a local minimax point for 

Proof From (ii) and (iv) there follow, as in the proof of Theorem 2, the 
necessary Kuhn-Tucker conditions for a maximum of the inner problem o1' 
(6) at (x,y"'(x), The (invertible) change or variable from (><,y) to 
where w:=r(x)+y converts the problem to: 

MINx=l:l. eQ ~!(ii,W), 

If p=(A. "(x),.u*), and k(z):=[-h(x,y),g(x)], then the Lagrangian Lin 
( 1 1 ) becomes F ( :z) ,. p T k ( z), and the Lag rang i an con d it i on s ( 1 2) and ( 1 3) 

become V 2 L(z;p)=O , p T k(z)=O, where z=(x,y"(x))< The invertible 

transforrnat·i on given by w:=r(x)+y may be expressed as z=ip(~), where 
It fallows that p)=O and p Tl<(ip(~))=O, where z=<P(t). 

Thus the Lagrangian necessary conditions hold also for problem (24). 
Since '¥(x,.) is concave on Q for each x-=1:1., and'¥ is convex on 1:1. for 

each we the last part of the proof of Theorem 2 s11ows that t* is a 
minimax point for (24), and hence ,y*) is a minimax point for ( 

A notable special case is that of a linear constraint -h(x,y)e5. 
Consider a constraint Ax+ By::; c, where ><=Rn, yeRP, ceRm, A is an mxn 
matrix, B is an n1l<p matrix, and psm<n, The matri>< B has full rank if it 
has rank MIN{m,p}. Assume that B has 'full rank. If p<m, additional 
columns may then be adjoined to to make an invertible mxm matrix El'"; 
let the additional components of y form a vector !:J(a); let y'""T:=[yT,!:J(a)T]. 

Define the m'(n matrix =IC"(A,B):=B""- 1 A. Then Ax+By=B(IC"x+y). Denote 
by K=K(A,,B) the matrix obtained from c· by deleting rows corresponding 

to elements of Y(a)· 

Theorem 4 In the minimax problem (6), let tile inner constraint 
-h(x,y)e5 take the linear form Ax+Bysc, where the matrix B has full rank, 
and psm<n. Let 'f(x,w):=F(x,w-K(A and TI:={w:Bw::;;c}. Assume that F 
and g are continuously differentiable, gisT-convex,'¥ is concave on 
n for each xel:\.:={x:-g(x)=T}, 't'C,w) is convex on Ll.. for each wen, 
hypothesis (i of Theorem 2 hal and the necessary conditions ( 12) 
hold at a point (x*,y*) satisfying the constraints of (6); Then (x*,!,f"") is a 
minimax point for (6), 



30 

Proof Construct the matrices K"'=K"'(A,B) and K=K(A,B) as above, Let e 
be a vector of ones, and let M be a sufficiently large positive number. The 
modified inner problem, 

{F(x,y)-Me T Y(a): B(K""x+y"")::sc}, (25) 

reaches the same maximum as the given inner problem in (6), since 
maxi mi zati on eliminates the artificial vari abl. es Y(a)· Let w:=K""x+y-. 

Since the transformation w) is invertible, the minimal< problem 
is equivalent to the problem 

MINxea MAXwsn 'i'(x,w)-MeTy(a). (26) 

The concave/convex hypotheses on'¥ imply similar properties for the 
objective function of (26), since linear terms are concave and convex, and 

'¥ does not involve !:J(a)· As in the proof of Theorem 3, the necessary 

Lagrangian conditions for ( imply necessary Lagrangian conditions for 
(26). Hence, by Theorem 2, these conditions are also sufficient for a 
mini max of (26), and so of (6) in this case. 
Corollary For a linear minimax problem, thus when is bilinear in x 
andy, and g and hare affine functions, with h satisfying the rank 
requirement of Theorem 4 and (i holding, the necessary Lagrangian 
conditions at a feasible point are also sufficient for a minimax, 

Some relaxation of the concave/convex hypothesis of Theorem 2 is 
discussed be'low, in Section 5. 

4" The n:lation of a min]max to a weak vector minimization 
Consider the minimax problem (6) when Y={ 1 and write 

fi(x):=F(x,i) (i= 1,2, ... ,r). This may be related to the weak vector 

minimization problem: 
WEAKMINx f(x):::{f1(x),f 2(x), ... ,fr(X)} subject tO -g(x)eT. 7) 

The weak minimization [2] is with respect to a convex cone thus x* is 
a weak minimum of (27) if f(x)-f(x*)foll-int Q for all feasible points x, 
sufficiently close to x*. Assume initially that Q=R+r· Let e T:=( 1,1 , ... , 1 ); 

and note that e=int Q. Let m(x):=MAX{f1(x),f 2(x), ... ,fr(x)}; then 

m(x*)e-f(x*) has all components <::0, and at least one zero component. 
This may be expressed by m(x*)e-f(x*)=oQ, where o denotes boundary. 
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Thus, for the minimax problem considered, there hold: 
(i) m(x''*)e-f(x*)eoQ; (ii) eoQ; (iiO m(x)e-m(x*)eeQ; 

where (ii) holds for all ;< satisfyi -g(x)=T, and expresses the inner 
maximization, and (iii) holds for all x satisfyi -g(x)=T, sufficiently 
close to x*, and expresses the outer minimization. Suppose, if possible, 
that x* is not a weak mini mum of ( 15). Then, for some such x, 
f(x)-f(x*)s-int From (i) and (iii), m(:~)e-H)I*)eQ-i·(lQCQ, From the 
supposition, f(X .. ")-f(x)sint Q. ,Adding these inclusions, 

=Q+int Q E int Q, 

contradicti (ii). Hence x* is a weak minimum of (27). 

This relation generalizes to weak minimization with respect to 
some other cones Q than fl'"r' ded that minimization is suitably 

defined. Let QcRr be a con vex cone with interior; and fix e e i nt Q. Now 
define, for a vector f(x), the maximum of with respect to Q 

(denoted by MAXo as satisfying 

m(x)e - f(x) ei3Q. (28) 

Then the proof of the 

H1AXQ 

ous paragraph shows that an optimum of 
subject to-g eT (29) 

must be a weak minimum of f(x) subject to -g()<)eT. 

It follows that Kuhn-Tucker necessary conditions hold for a 
considerable class of optimization problems, that imply weak vector 
minimizationo Some other examples arise in generalized fractional 
programming (see Chapter 6]). 

5. Usia1g inl!ex hypotheses 
In problem ('I the hypothesis that F(i<,.) is concave on B may be 

weakened as follows. Assume that -F(x,.) is invex on B, def'ined [8,3] by 
eA, 'Vy,y's;:;) -F(x + F(x,y) 2: Fy(x,y)e(x,y,y'), (30) 

and that h(y)=h(x,y) is also invex, thus 
y,y' e::;) h(y')- h(y):::sh'(y)e(x,y,y'), (3 1) 

with the same function e, with a::: 5b '**' a-b ss. It is known then [B] that 

the Kuhn-Tucker necessary conditions ( 12),( 1 for the inner problem in 
(14) are also su'fficient; thus when llx-x*ll is sufficiently small, 

q(x):= F(x,y"(x))=MAXyeB F(x,y), (32) 

Assume also that each function F(.,y), ysB, is invex, thus 
('Vx,x' ell., 'Vy e;:;) ,y)-F(x,y);:::F x<x,y)O'(x,x'), (33) 

thus with the function 0' independent of yeS; and assume that g is invex, 
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thus 
g(x')-g(x)2:T Qx(x)o(x,x'), (34) 

with the same function o. 
From 1) and if y*=y"'(x*) and -g(x) 

- Q(x*) = F(x,y"(x))-F(x*,yA(x*) 

2:: F x<x* ,y*)o(x* ,x) 

= - J.19x<x* ,y*)o(x* ,><) 

from (33) and y"(x*)=y* 

from ( 12) 

2:: -JJg(x) + 

2:: 0 + 0, 

This has proved 
Theorem 5 For the minimax problem assume that F, g,h satisfy 
hypotheses (i), (ii) and (iv) of Theorem 2, and also the invex hypotheses 
(30), (31), (33),(34). Then (x*,y*) is a minimum point for (6). 

6. SensHivity of minimax val!H~ to perturbations 
Consider now problem (6), with a perturbation parameter peAs 

included in each function, thus: 
J(p):::: !MINx{MAXyF(x,y;p):-h(x,y;p) s:S}:-g(x;p) =T] . 

The Lagrangian for is 
l(x,y:J..,Jl;p):=F(x,y;p)-J.. T h(x,y;p )+ JJ T g(x;p). (3 6) 

Let Vp denote gradient with respect top, Assume the hypotheses of 

Theorem 1, for each fixed pin a neighbourhood N of 0. Then 
m( x;p) :={MAX yF (x ,y; p ):- h (X ,y;p) e S} = F ( x, y "(x; p) ;p), ( 3 7) 

for a suitable function y"(x;p); and, having assumed suitable regularity 
conditions for the inner problem, mp(x;p) =V p!F(x,y;p) -:A. T g(x,y;p)J at 

y=y"(x;p),:A.=J.. "'(x;p), from [4,Theorem 1 L For the outer problem, 
J(p):= MINx {m(x;p): -g(x;p)eT}; (38) 

the Lagrangian is F(x,y"'(x);p)+Jl T g(x;p); the optimal point x and multiplier 
Jl are functions x*"(p),Jl#(p), Assuming suitable regularity, <P'(p) equals 
the gradient, with respect top, of the Lagrangian m(x;p) +Jl T g(x;p). Hence, 

substituting for mp(x;p), 

J'(O):::: mp(X*;O) + J.l T 9p(X*;O) 

= Fp(X*,y*;O)- A *T Qp(X*,y*;O) + i-!*T 9p(X*;O), (39) 

where (x*,y*)=(x#(O),y"(x*;O) is the optimum at p=O, with Lagrange 
multipliers 11.*=/.,"(x*;O), i-!*=u*"(o). Hence, citing appropriate regularity 
conditions from [4], the following Theorem is proved. 



33 

Theorem 6 For the parametrized minimax problem (35), assume the 
hypotheses of Theorem 1, for each pin a neighbourhood N of 0; also that 
y"(x;.) is Lipschitz , and A. "(x;.) and Jl""" (.) are continuous at 0. Then the 
optimum value function J(p) of (35) is Frechet differentiable at 0, with 

J'(O) = lp(X*,y*:A.*,)l*;O). (40) 

Remark For conditions sufficient for such Lipschitz conditions, w'ith 
continuity of Lagrange multipliers as f"uncti ons of p, see [5L Conditions 
for the multipliers relate to a dua·l problem. In particular, if problem 
(35) is linear in all variables, then A. "(x;.) and Jl..., (.) are 1 ocally constant 
functions, with jumps when a basis changes in a dual linear program. 
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