Lagrangian conditions for a minimax

B. D. Craven

Abstract

A general approach is given to Lagrangian necessary conditions for a minimax problem. The necessary conditions become sufficient for a minimax under extra hypotheses, with either concave/convex or invex functions, and restrictions on the constraints. A minimax is shown to relate to a weak minimum of a vector function. The sensitivity of a minimax value to a perturbation is related to the gradient of a Lagrangian function with respect to the parameter.

Key words minimax, Lagrangian, concave/convex functions, invex, Robinson condition, weak vector minimization, sensitivity to perturbation.

Amer. Math. Soc. Classification Number 90C30

1. Introduction

Minimax problems are often associated with constrained minimization problems. Examples of functions F(x,y) which are to be maximized with respect to y, then minimized with respect to x, include:

(i) F(x,y) = f(y) - x^Tg(y), (1)
 a Lagrangian function from the problem
 Maximize f(y) subject to g(y)≤0 (2)
 [or to -g(y)∈S, where S is a closed convex cone];

(ii)
$$F(x,y) = f(y) - (\mu/2) ||[g(y)+\mu^{-1}x]_+||^2$$
,

an augmented Lagrangian for (2); μ is a positive parameter, and $[t]_{+} = t$ if $t \ge 0$, $[t]_{+}=0$ if t<0, for each component of $g(y)+\mu^{-1}x$. [For a constraint $-g(x) \in S$, the expression $[g(y)+\mu^{-1}x]_{+}$ is replaced by $(I-P)[g(y)+\mu^{-1}x]$, where Pv=v for $v\in S$, and, for $v\notin S$, Pv is the orthogonal projection of v onto S]. For (i) and (ii), the minimax problem is:

 $[MIN_X \{MAX_U F(x,y): g(y) \le 0\}: x \ge 0],$

with $x \ge 0$ replaced by $x \in S^*$, the dual cone of S, in case of a constraint $-g(y) \in S$. Another example of minimax occurs when an objective function is the pointwise maximum of several functions, namely

 $[MIN_{X} \{MAX_{j} f_{j}(x)\} : g(x) \le 0],$

where i=1,2,...r.

A (global)minimax (x*,y*) for the problem:

 $MIN_{X \in \Delta} MAX_{U \in \Xi(X)} F(x, y),$ (3)

where \triangle and \equiv (x) are given sets, means that there exists a function y^(x) such that y^{*}=y^(x*) and

 $(\forall x \in \Delta, \forall y \in \Xi(x)) \quad F(x,y^{(x)}) \ge F(x^*,y^*) \text{ and } F(x,y^{(x)}) \ge F(x,y).$ (4) In contrast, (x^*,y^*) is a saddlepoint for (3) if, instead,

 $(\forall x \in \Delta, \forall y \in \Xi(x)) \quad F(x,y^*) \ge F(x^*,y^*) \ge F(x^*,y).$ (5) It is well known - see, for example, Tanimoto [11], Craven and Mond [7], Bector and Chandra [1] - that a minimax problem is often associated with necessary conditions of Kuhn-Tucker type. It will now be shown that this holds under fairly general conditions, and also that such necessary conditions become also sufficient for a minimax, under suitable convexity hypotheses.

2. Necessary conditions for a minimax

Consider the problem:

 $[MIN_{X} \{MAX_{U} F(x,y): -h(x,y) \in S\}: -g(x) \in T], \qquad (6)$

in which X,Y,Z,U are normed spaces, $F:X\times Y \rightarrow R$, $h:X\times Y \rightarrow U$, $g:X \rightarrow Z$ are continuously (Fréchet) differentiable functions, S \subset U and T \subset Z are closed convex cones, MIN denotes local minimum, and MAX denotes local maximum. (The spaces may, but need not, be finite-dimensional.) Assume that the inner (maximization) problem reaches a (local) maximum when $y=y^{(x)}$, with maximum value denoted by m(x), and that a constraint qualification holds at this maximum. Then m(x) = F(x,y^(x)); and Kuhn-Tucker necessary conditions hold:

 $(\exists\lambda(x)\in S^*)$ $F_y(x,y^{(x)})-\lambda(x)^Th_y(x,y^{(x)})=0, \lambda(x)^Th(x,y^{(x)})=0.$ (7) (Here F_y means partial Fréchet derivative with respect to y, and superscript T denotes transpose in finite dimensions; in infinite dimensions, λ is a continuous linear functional, and λ^Th_y means the composition $\lambda \circ h_y$.) Since x is a parameter in the inner problem, it follows, under some regularity conditions, that the gradient m_{χ} of m(x) equals the Fréchet derivative, with respect to x, of the Lagrangian F(x,y)- $\lambda^{T}g(x,y)$, thus

$$m_{X}(x) = F_{X}(x,y^{(x)}) - \lambda(x)^{T}h_{X}(x,y^{(x)}).$$
(8)

Appropriate regularity conditions are [4] that $y^{(.)}$ is a Lipschitz function, $\lambda(.)$ is continuous, and a constraint qualification holds for the inner problem for each x, so that Kuhn-Tucker necessary conditions hold. Hypotheses sufficient for the first two requirements are discussed in [5].

Consider now the outer (minimization) problem. Assuming a constraint qualification (now relating to the constraint -g(x)∈T), necessary Kuhn-Tucker conditions for a minimum at x=x* are :

 $(\exists \mu \in T^*)$ m_X(x*) + $\mu^T g_X(x^*) = 0, \mu^T g(x^*) = 0.$ (9)

Substituting from (8) for m_X gives

$$F_{X}(x^{*},y^{(x^{*})}) - \lambda(x^{*})^{T}h_{X}(x^{*},y^{(x^{*})}) = 0.$$
(10)

Define therefore a Lagrangian function for the minimax problem (6) as $L(x,y;\lambda,\mu) = F(x,y)-\lambda^{T}h(x,y)+\mu^{T}g(x). \qquad (11)$

Denote ∇L :=[L_x,L_y]. The following theorem has now been proved. **Theorem 1** In the minimax problem (6), assume that

 (i) F,g and h are continuously Fréchet differentiable; the minimax is reached at (x,y)=(x*,y*), with a constraint qualification holding there for the outer problem;

(ii) for $-g(x) \in T$ and $||x-x^*||$ sufficiently small, the inner problem reaches a local maximum at a point $y=y^{(x)}$, Kuhn-Tucker conditions hold there with Lagrange multiplier $\lambda^{(x)}$, $\lambda^{(.)}$ is continuous at x^* , and $y^{(.)}$ is a Lipschitz function, with $y^{(x^*)}=y^*$. Then

 $(\exists \lambda^* \in S^*, \mu^* \in T^*) \nabla L(x^*, y^*; \lambda^*, \mu^*) = 0, \mu^*^T g(x^*) = 0; \lambda^*^T h(x^*, y^*) = 0, (12)$ where $\lambda^{(x^*)} = \lambda^*$. Moreover, for $-g(x) \in T$ and $||x - x^*||$ sufficiently small, $L_{ij}(x, y^{(x)}; \lambda^{(x)}, \mu^*) = 0; \lambda^{(x)}^T h(x, y^{(x)}) = 0.$ (13) 3. Sufficient conditions for a minimax

A converse result to Theorem 1 holds, under the serious restriction that h(x,y) does not depend on x. In this case, problem (6) takes the form:

$$\label{eq:MIN} \begin{split} & \text{MIN}_{x \in \Delta} \quad \text{MAX}_{y \in \Xi} \quad F(x,y) \,, \eqno(14) \\ & \text{in which } \Delta := \{x \in X := g(x) \in T\}, \text{ and } \Xi := \{y \in Y := h(x,y) \in S \text{ is independent of } x. \end{split}$$

In order to apply an implicit function theorem, consider the system: $L_{U}(x,y;\lambda,\mu^{*})=0; \lambda^{T}h(x,y)=0, -h(x,y)\in S, \lambda\in S^{*},$ (15)

written in the form $-K(y,\lambda;x) \in V$, where μ^* is fixed, x is a parameter, V is the convex cone $\{0\}\times\{0\}\times S\times S^*$, and solutions $(y,\lambda)=\Psi(x)$ are sought, when $\|x-x^*\|$ is small. For this system, consider the Robinson condition

 $0 \in int[K(y^*,\lambda^*;x^*) + ran P_{(y,\lambda)}K(y^*,\lambda^*;x^*) + V],$ (16) where int denotes interior, ran denotes range, and $P_{(y,\lambda)}$ denotes partial Fréchet derivative with respect to (y,λ) . From (15) and (16), the condition requires that

 $0 = int[\lambda^{T}h + \lambda^{T}h_{U}(X \times Y) + h^{T}(U^{*})]; \qquad (18)$

$$0 \in int[h+h_{II}(X \times Y)+S];$$
(19)

$$0 \in int[-\lambda - U^* + S^*]; \tag{20}$$

where all functions are evaluated at $(x,y,\lambda)=(x^*,y^*,\lambda^*)$. Note that (17) is equivalent to the surjectivity of L_{uu}; and(20) holds trivially.

Theorem 2 For problem (6), assume that

(i) F,g and h are continuously Fréchet differentiable, and h(x,y) does not depend on x,

(ii) the Kuhn-Tucker necessary conditions (12) hold, with $-h(x^*,y^*) \in S$, $-g(x^*) \in T$;

(iii) F(x,.) is concave for each $x \in \Delta$, F(.,y) is convex for each $y \in Y$, and that g(.) is T-convex;

(iv) L_y is continuously Fréchet differentiable with respect to y, $L_{yy}(x^*,y^*)$ is surjective, the other Robinson conditions (18), (19) hold at (x*,y*, λ^*), and L_y is continuously differentiable with respect to x. Then (x*,y*) is a local minimax point for (6).

Proof Robinson's theorem [9, Theorem 1] shows from (iv) that (13) has a continuous solution $(y,\lambda)=(y^{(x)},\lambda^{(x)})$, with $(y^{(x^*)},\lambda^{(x^*)})=(y^*,\lambda^*)$,

valid when $||x-x^*||$ is sufficiently small. Implicit differentiation of (15) shows that y⁽.) is differentiable at x^{*}, hence Lipschitz. Hence there hold (15), the necessary Kuhn-Tucker conditions for a maximum of the inner problem in (14). Since F(x,.) is concave, these necessary conditions are also sufficient for a maximum at y=y^(x); thus

$$n(x) := F(x,y^{(x)}) = MAX_{u \in \Xi} F(x,y).$$
 (21)

Since m(.) is a maximum of a set of convex functions, m(.) is convex. Since $\lambda^{(.)}$ is continuous and $y^{(.)}$ is Lipschitz, the gradient $m_{\chi}(x)$ is given by (8). If $-g(x) \in T$, then convexity of F(.,y*) and T-convexity of g(.) show that, if $x \in \Delta$, then

$$\begin{split} F(x,y^{(x)})-F(x^{*},y^{*}) &= m(x)-m(x^{*}) & \text{since } y^{*}=y^{(x^{*})} \\ &\geq m_{x}(x^{*})(x-x^{*}) & \text{since } m(.) \text{ is convex} \\ &= F_{x}(x^{*},y^{*}))(x-x^{*}) & \text{by (8), since } h_{x} \equiv 0 \\ &= -\mu^{*T}g_{x}(x^{*},y^{*})(x-x^{*}) & \text{by (12)} \\ &\geq -\mu^{*T}g(x) + \mu^{*T}g(x^{*}) & \text{since } \mu^{*T}g(.) \text{ is convex} \\ &\geq 0 + 0. \end{split}$$

Remark The proof does not need MAX $_y$ F(.,y) differentiable; it may not be. **Remark** If the hypothesis (iv) is omitted, then (21) only holds for x=x*, and only a saddlepoint can be deduced, by

F(x,y*)-F(x*,y*)≥F_x(x*,y*)(x-x*)

 $=-\mu^{*T}g_{x}(x^{*})(x-x^{*})$ ≥- $\mu^{*T}g(x)+\mu^{*T}g(x)$ ≥0+0.

Remark If h(x,y) depends on x, $\Phi: \Delta \times Y \rightarrow R^{-}:= R \cup \{+\infty\}$ may be defined (in the manner of Rockafellar [10]) as $\Phi(x,y)=F(x,y)$ when $-h(x,y)\in S$, otherwise $\Phi(x,y)=+\infty$. Then (6) is equivalent to the problem $MIN_{x\in\Delta} \{MAX_{u\in Y} \Phi(x,y)\}.$ (22)

Then Theorem 2 may be applied with Φ replacing F and Y replacing Ξ . But the necessary conditions so obtained are not useful, because the concave/convex properties assumed for Φ only hold when Φ takes only finite values for $x \in \Delta$, thus when h does not depend on x.

A less restrictive sufficiency theorem can be given, when the dependence of h(x,y) on x takes a certain form. Consider the form: h(x,y)=q(r(x)+y), (23)

where q and r are differentiable functions.

Theorem 3 For the minimax problem (6), assume that F,g,h are continuously Fréchet differentiable, and satisfy hypotheses (ii) and (iv) of Theorem 2, where h(x,y) has the special form (23) with q and r differentiable. Define $\Psi(x,w)$:=F(x,w-r(x)) and Ω :={w:-q(w)=S}. Assume also that $\Psi(x,.)$ is concave on Ω for each $x \in \Delta$, $\Psi(.,w)$ is convex for each $w \in \Omega$, and that g(.) is T-convex. Then (x^*,y^*) is a local minimax point for (6).

Proof From (ii) and (iv) there follow, as in the proof of Theorem 2, the necessary Kuhn-Tucker conditions for a maximum of the inner problem of (6) at $(x,y^{(x)})$. The (invertible) change of variable from (x,y) to (x,w), where w:=r(x)+y converts the problem (6) to:

 $MIN_{X \in \Delta} MAX_{W \in \Omega} \Psi(x, w).$ (24)

If z=(x,y), $p=(\lambda^{(x)},\mu^*)$, and k(z):=[-h(x,y),g(x)], then the Lagrangian L in (11) becomes $F(z)+p^Tk(z)$, and the Lagrangian conditions (12) and (13) become $\nabla_z L(z;p)=0$, $p^Tk(z)=0$, where $z=(x,y^{(x)})$. The invertible transformation given by w:=r(x)+y may be expressed as $z=\varphi(\zeta)$, where $\zeta=(x,w)$. It follows that $\nabla_r L(\varphi(\zeta);p)=0$ and $p^Tk(\varphi(\zeta))=0$, where $z=\varphi(\zeta)$.

Thus the Lagrangian necessary conditions hold also for problem (24). Since $\Psi(x,.)$ is concave on Ω for each $x \in \Delta$, and $\Psi(.,w)$ is convex on Δ for each $w \in \Omega$, the last part of the proof of Theorem 2 shows that ζ^* is a minimax point for (24), and hence (x^*,y^*) is a minimax point for (6).

A notable special case is that of a linear constraint $-h(x,y) \in S$. Consider a constraint $Ax + By \le c$, where $x \in \mathbb{R}^n$, $y \in \mathbb{R}^p$, $c \in \mathbb{R}^m$, A is an m×n matrix, B is an m×p matrix, and $p \le m < n$. The matrix B has full rank if it has rank MIN{m,p}. Assume that B has full rank. If p < m, additional columns may then be adjoined to B, to make an invertible m×m matrix B° ; let the additional components of y form a vector $y_{(a)}$; let $y^{\sim T} := [y^T, y_{(a)}^T]$. Define the m×n matrix $K^{\sim} \equiv K^{\sim}(A,B) := B^{\sim -1}A$. Then $Ax + By = B(K^{\sim}x + y)$. Denote by $K \equiv K(A,B)$ the matrix obtained from K^{\sim} by deleting rows corresponding to elements of $y_{(a)}$.

Theorem 4 In the minimax problem (6), let the inner constraint -h(x,y) \in S take the linear form Ax+By \leq c, where the matrix B has full rank, and p \leq m<n. Let $\Psi(x,w)$:=F(x,w-K(A,B)x), and Π :={w:Bw \leq c}. Assume that F and g are continuously differentiable, g is T-convex, $\Psi(x,.)$ is concave on Π for each $x \in \Delta$:={x:-g(x) \in T}, $\Psi(.,w)$ is convex on Δ for each $w \in \Pi$, hypothesis (iv) of Theorem 2 holds, and the necessary conditions (12) hold at a point (x*,y*) satisfying the constraints of (6). Then (x*,y*) is a minimax point for (6). **Proof** Construct the matrices $K^{=}K^{(A,B)}$ and K=K(A,B) as above. Let e be a vector of ones, and let M be a sufficiently large positive number. The modified inner problem,

$$MAX_{ii} \{F(x,y) - Me^{T}y_{(a)} : B(K^{x}+y^{x}) \le c\},$$
(25)

reaches the same maximum as the given inner problem in (6), since maximization eliminates the artificial variables $y_{(a)}$. Let w:=K[×]x+y[×]. Since the transformation (x,y[×])→(x,w) is invertible, the minimax problem is equivalent to the problem

$$MIN_{X \in \Delta} MAX_{W \in \Pi} \Psi(x, w) - Me^{T} \Psi(a).$$
(26)

The concave/convex hypotheses on Ψ imply similar properties for the objective function of (26), since linear terms are concave and convex, and Ψ does not involve $y_{(a)}$. As in the proof of Theorem 3, the necessary Lagrangian conditions for (6) imply necessary Lagrangian conditions for (26). Hence, by Theorem 2, these conditions are also sufficient for a minimax of (26), and so of (6) in this case.

Corollary For a linear minimax problem, thus when F(x,y) is bilinear in x and y, and g and h are affine functions, with h satisfying the rank requirement of Theorem 4 and (iv) holding, the necessary Lagrangian conditions at a feasible point are also sufficient for a minimax.

Some relaxation of the concave/convex hypothesis of Theorem 2 is discussed below, in Section 5.

4. The relation of a minimax to a weak vector minimization

Consider the minimax problem (6) when Y={1,2,...,r}, and write f_i(x):=F(x,i) (i=1,2,...,r). This may be related to the weak vector minimization problem:

WEAKMIN_x $f(x):=\{f_1(x), f_2(x), ..., f_r(x)\}$ subject to $-g(x) \in T$. (27) The weak minimization [2] is with respect to a convex cone Q; thus x* is a weak minimum of (27) if $f(x)-f(x^*) \neq -int Q$ for all feasible points x, sufficiently close to x*. Assume initially that $Q=R_+^r$. Let $e^{T}:=(1,1,...,1)$; and note that $e \in int Q$. Let $m(x):=MAX\{f_1(x),f_2(x),...,f_r(x)\}$; then $m(x^*)e-f(x^*)$ has all components ≥ 0 , and at least one zero component. This may be expressed by $m(x^*)e-f(x^*)\in\partial Q$, where ∂ denotes boundary. Thus, for the minimax problem considered, there hold: (i) $m(x^*)e-f(x^*) \in \partial Q$; (ii) $m(x)e-f(x) \in \partial Q$; (iii) $m(x)e-m(x^*)e \in Q$; where (ii) holds for all x satisfying $-g(x) \in T$, and expresses the inner maximization, and (iii) holds for all x satisfying $-g(x) \in T$, sufficiently close to x*, and expresses the outer minimization. Suppose, if possible, that x* is not a weak minimum of (15). Then, for some such x, $f(x)-f(x^*) \in -int Q$. From (i) and (iii), $m(x)e-f(x^*) \in Q + \partial Q \subset Q$. From the supposition, $f(x^*)-f(x) \in int Q$. Adding these inclusions, $m(x)e-f(x) \in Q+int Q \in int Q$,

contradicting (ii). Hence x* is a weak minimum of (27).

This relation generalizes to weak minimization with respect to some other cones Q than R_{+}^{r} , provided that minimization is suitably defined. Let $Q \subset R^{r}$ be a convex cone with interior; and fix $e \in int Q$. Now define, for a vector f(x), the maximum of f(x) with respect to Q (denoted by MAX_Q f(x)) as m(x), satisfying

m(x)e - f(x) ∈∂Q. (28) Then the proof of the previous paragraph shows that an optimum of MIN_X {MAX_Q f(x)} subject to -g(x)∈T (29)

must be a weak minimum of f(x) subject to $-g(x) \in T$.

It follows that Kuhn-Tucker necessary conditions hold for a considerable class of optimization problems, that imply weak vector minimization. Some other examples arise in generalized fractional programming (see [6, Chapter 6]).

5. Using invex hypotheses

In problem (14), the hypothesis that F(x,.) is concave on Ξ may be weakened as follows. Assume that -F(x,.) is invex on Ξ , defined [8,3] by $(\forall x \in \Delta, \forall y, y' \in \Xi) -F(x, y') + F(x, y) \ge F_y(x, y) \Theta(x, y, y')$, (30) and that h(y) = h(x, y) is also invex, thus

 $(\forall y,y' \in \Xi) \qquad h(y')-h(y) \ge_S h'(y) \theta(x,y,y'), \qquad (31)$ with the same function θ , with $a \ge_S b \Leftrightarrow a-b \in S$. It is known then [8] that the Kuhn-Tucker necessary conditions (12),(13) for the inner problem in (14) are also sufficient; thus when $||x-x^*||$ is sufficiently small,

$$q(x) := F(x,y^{(x)}) = MAX_{u \in \Xi} F(x,y).$$
 (32)

Assume also that each function F(.,y), $y \in \Xi$, is invex, thus $(\forall x, x' \in \Delta, \forall y \in \Xi)$ $F(x',y) - F(x,y) \ge F_x(x,y)\sigma(x,x')$, (33)

thus with the function σ independent of $y \in \Xi$; and assume that g is invex,

thus

$$g(x')-g(x) \ge_T g_x(x)\sigma(x,x'),$$
 (34)

with the same function σ .

From (31) and (32), if
$$y^*=y^{(x^*)}$$
 and $-g(x) \in T$,
 $Q(x) - Q(x^*) = F(x,y^{(x)}) - F(x^*,y^{(x^*)})$
 $\ge F_X(x^*,y^*)\sigma(x^*,x)$ from (33) and $y^{(x^*)}=y^*$
 $= -\mu g_X(x^*,y^*)\sigma(x^*,x)$ from (12)
 $\ge -\mu g(x) + \mu g(x^*)$
 $\ge 0 + 0$.

This has proved

Theorem 5 For the minimax problem (6), assume that F, g,h satisfy hypotheses (i), (ii) and (iv) of Theorem 2, and also the invex hypotheses (30), (31), (33),(34). Then (x^*,y^*) is a minimum point for (6).

6. Sensitivity of minimax value to perturbations

Consider now problem (6), with a perturbation parameter $p \in \mathbb{R}^S$ included in each function, thus:

 $J(p):= [MIN_{X} \{MAX_{y}F(x,y;p):-h(x,y;p) \in S\}:-g(x;p) \in T].$ (35) The Lagrangian for (35) is

 $L(x,y;\lambda,\mu;p):=F(x,y;p)-\lambda^{T}h(x,y;p)+\mu^{T}g(x;p).$ (36) Let ∇_{p} denote gradient with respect to p. Assume the hypotheses of

Theorem 1, for each fixed p in a neighbourhood N of 0. Then m(x;p):={MAX_UF(x,y;p):-h(x,y;p)∈S}=F(x,y^(x;p);p), (37)

for a suitable function $y^{(x;p)}$; and, having assumed suitable regularity conditions for the inner problem, $m_p(x;p) = \nabla_p[F(x,y;p) - \lambda^T g(x,y;p)]$ at $y=y^{(x;p)},\lambda=\lambda^{(x;p)}$, from [4,Theorem 1]. For the outer problem,

 $J(p):= MIN_{x} \{m(x;p): -g(x;p) \in T\};$ (38) the Lagrangian is $F(x,y^{(x)};p)+\mu^{T}g(x;p)$; the optimal point x and multiplier μ are functions $x^{\#}(p),\mu^{\#}(p)$. Assuming suitable regularity, $\Phi'(p)$ equals the gradient, with respect to p, of the Lagrangian $m(x;p) +\mu^{T}g(x;p)$. Hence, substituting for $m_{p}(x;p)$,

 $J'(0) = m_{D}(x^{*};0) + \mu^{T}g_{D}(x^{*};0)$

 $= F_{D}(x^{*},y^{*};0) - \lambda^{*T}g_{D}(x^{*},y^{*};0) + \mu^{*T}g_{D}(x^{*};0), \qquad (39)$

where $(x^*,y^*)=(x^{\#}(0),y^{(x^*;0)})$ is the optimum at p=0, with Lagrange multipliers $\lambda^*=\lambda^{(x^*;0)}$, $\mu^*=\mu^{\#}(0)$. Hence, citing appropriate regularity conditions from [4], the following Theorem is proved.

Theorem 6 For the parametrized minimax problem (35), assume the hypotheses of Theorem 1, for each p in a neighbourhood N of 0; also that $y^{(x;.)}$ is Lipschitz, and $\lambda^{(x;.)}$ and $\mu^{\#}(.)$ are continuous at 0. Then the optimum value function J(p) of (35) is Fréchet differentiable at 0, with $J'(0) = L_{p}(x^{*},y^{*};\lambda^{*},\mu^{*};0).$ (40)

Remark For conditions sufficient for such Lipschitz conditions, with continuity of Lagrange multipliers as functions of p, see [5]. Conditions for the multipliers relate to a dual problem. In particular, if problem (35) is linear in all variables, then $\lambda^{(x_{i})}$ and $\mu^{\#}(.)$ are locally constant functions, with jumps when a basis changes in a dual linear program.

7. References

1. C.R. Bector and S. Chandra, Duality for pseudolinear minmax problems, Asia-Pacific Journal of Operational Research **3** (1986), 86-94.

2. B.D. Craven, Nonlinear programming in locally convex spaces, J. Optim. Theor. Appl. 10 (1972), 197-210.

3. B.D. Craven, Invex functions and constrained local minima, Bull. Austral. Math. Soc. 25 (1981), 37-46.

4. B.D. Craven, Perturbed minimization, with constraints adjoined or deleted, Math. Operationsforschung und Statistik, ser. Optimization 14 (1983), 23-36.

5. B. D. Craven, On sensitivity analysis for multicriteria optimization, Optimization **19** (1988) (to appear).

6. B.D. Craven, Fractional Programming, Heldermann Verlag, Berlin, 1988.

7. B.D. Craven and B. Mond, On maximizing a ratio of optimization problems, Cahiers du Centre d'Etude de Recherche Opérationelle **25** (1983), 29-34.

8. M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. **80** (1981), 545-550.

9. S.M. Robinson, Stability theory for systems of inequalities; Part II: Differentiable nonlinear systems, SIAM J. Numer. Anal. 13 (1976), 497-513.

 R.T. Rockafellar, Convex Analysis, Princeton Univ. Press, 1970.
 S. Tanimoto, Nondifferentiable mathematical programming and convex-concave problems, J. Optim. Theor. Appl. 31 (1980), 331-342.

> Mathematics Department, University of Melbourne, Parkville, Vic. 3052, Australia.